검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 61

        41.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        In recent days, photochemical smog due to the rapid industry development and vehicle increasement has become a critical pollutant in the metropolitan area and the number of ozone alarm signal has increased every year. This research was performed to evaluate VOCs emission source characteristics and concentration of VOCs in Daegu. The site average concentration was observed in the following order : industrial area > commercial area > residential area. Most of the VOCs species except toluene showed variations with higher concentration during nighttime, and lower concentration during the daytime. The major VOCs of stationary emission source were BTEX(benzene, toluene, ethylbenzene, xylene) and methylene chloride, trichloroethene and styrene. Also, those of automobile exhaust were toluene and benzene. Also, the major VOCs concentration emited by the vehicle fuel was observed in the following order : gasoline > light oil > liquefied petroleum gas (L.P.G). Correlation coefficients values were estimated between major VOCs such as toluene, ethylbenzene, m,p-xylene, o-xylene. Results showed that correlation coefficient values were significant magnitude above 0.76. Also, there showed highly significant correlations among ethylbenzene, m,p-xylene, and o-xylene concentration(Pearson correlation coefficients, r= 0.868~0.982). Calculated correlation coefficients among commercial area, industrial area and residential area were 0.934~0.981, they showed high correlation. There showed highly correlation between stationary emission source and industrial area, compared with commercial area and residential area. Also, calculated correlation coefficients among commercial area, industrial area, residential area and automobile exhaust were 0.732, 0.725, 0.777, respectively.
        42.
        2005.04 KCI 등재 서비스 종료(열람 제한)
        Activity of manganese oxide supported on γ-Al2O3 was increased when cerium was added. Also, cerium-added manganese oxide on γ-Al2O3 was more effective in oxidation of toluene than that without cerium. XRD result, it was observed that MnO2+CeO2 crystalline phases were present in the samples. For the used catalyst, a prominent feature has increased by XPS. TPR/TPO profiles of cerium-added manganese oxide on γ-Al2O3 changed significantly increased at a lower temperature. The activity of 18.2 wt% Mn+10.0 wt% Ce/γ-Al2O3 increased at a lower temperature. The cerium added on the manganese catalysts has effects on the oxidation of toluene.
        43.
        2005.03 KCI 등재 서비스 종료(열람 제한)
        The research in this paper was carried out to examine the BTEX(Benzene, Toluene, Ethylbenzene, Xylene) concentrations in Seongseo Industrial Complex. These compounds are the major constituents, more than 60% in composition of total VOCs, mainly charging in ambient air. BTEX samples were collected from the 38 sites, 10 for the source points and 18 for the boundary sites, and were analyzed by canister-GC/MS. The mean concentrations of BTEX were 33 ppbv for benzene, 214 ppbv for toluene, 89 ppbv for ethylbenzene, 77 ppbv for xylene. Among the BTEX, toluene had the highest concentration in the source points and boundary sites. In the source points, BTEX concentration of incineration facility for hazardous wastewater appeared highly in the range of 220~350 ppbv. BTEX concentrations in source boundary sites appeared in the order of toluene>ethylbenzene>xylene>benzene. As a result of the correlation analysis, the concentration of the source points was related to those of the boundary sites. Correlation of ethylbenzene and xylene was presented to 0.7991(P<0.01), 0.6329(P<0.05) as the correlation coefficient, respectively.
        44.
        2005.01 KCI 등재 서비스 종료(열람 제한)
        As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds from inventory sources in Seongseo industrial area were concentrated and analyzed with thermal desorber/GC/ MSD, and major malodorous compounds were estimated. Odor intensity and odor concentration was analyzed simultaneously During a period from November in 2002 to December in 2003, this study was conducted to evaluate malodor emission characterization in major treatment facilities. The major components were Dimethyl sulfide, Dimethyl disulfide, Methyl mercaptane, Ammonia, Benzene, Toluene, m,p-xylene, o-xylene, Styrene, 1,2,4- T.M.B and 1,3,5-T.M.B. Among the six major inventory sources, the odor unit concentration of Night-soil disposal facilities was the highest, 669~2344 ou/m3.
        46.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        V2O5/TiO2 catalysts promoted with Mn were prepared and tested for selective catalytic reduction of NOx in NH3. The effects of promoter content, degree of catalyst loading were investigated for NOx activity while changing temperatures, mole ratio, space velocity and O2 concentration. Among the various V2O5 catalysts having different metal loadings, V2O5(1 wt.%) catalyst showed the highest activity(98%) under wide temperature range of 200-250℃. When the V2O5 catalyst was further modified with 5 wt.% Mn as a promoter, the highest activity(90-47%) was obtained over the low temperature windows of 100-200℃. From Mn-V2O5/TiO2, it was found that by addition of 5 wt.% Mn on V2O5/TiO2 catalyst, reduction activity of catalyst was improved, which resulted in the increase of catalytic activity and NOx reduction. According to the results, NOx removal decreased for 10%, but the reaction temperature down to 100℃.
        47.
        2003.12 KCI 등재 서비스 종료(열람 제한)
        Under controlled conditions in an environmental chamber, 24 experiments were performed to compare the ability of a Variable-Air-Volume/Bypass Filtration System(VAV/BPFS) to remove indoor pollutants and to conserve energy with the ability of conventional Variable Air Volume(VAV) system. The specific conclusions of this paper were; first, the VAV/BPFS was more efficient than the VAV system in removing particulate matter, TVOC, and target VOCs. The total effective removal rate of PM for the VAV/BPFS was two times as high as that of the VAV system. The total effective removal rate of TVOC for the VAV/BPFS was 20 percent higher than that of the VAV system. Also each target VOC concentration was reduced by using the VAV/BPFS. Second, clean air delivery rate was increased by using VAV/BPFS due to additional filtration rate. Otherwise, the VAV/BPFS decreased outdoor supply air rate above 25 percent relative to the rate of VAV system. Third, total energy consumption by the VAV/BPFS was lower than that of the VAV system during the period with indoor thermal load, occupied time. The energy saving of the VAV/BPFS ranged from 11 to 16 percent. The VAV/BPFS improves indoor air quality more efficiently than the VAV system, and it reduced energy consumption. Retrofitting the VAV system with the VAV/BPFS was easy. The use of VAV/BPFS is, therefore, recommended for buildings with VAV system as well as for buildings at designing stage.
        48.
        2003.10 KCI 등재 서비스 종료(열람 제한)
        We studied the relationship between a civil affair occurrence of bad smell and meteorological conditions around Seongseo district for recent 2 years. The results were as follows; (1) The civil affair occurrence days of bad smell were concentrated from May to August. (2) Daily mean temperatures were mostly 20~28℃ and daily mean relative humidities were 60~80%. (3) Wind speeds were mostly less than 2m/s(75%), and wind directions were southerly winds(50%). It was hardly occurred for relatively well-ventilated conditions in cases of wind speeds 2m/s over. And the Lagrangian particle dispersion model were used to figure out the transport route in a civil affair occurrence days of bad smell. It was found that the south-western winds transported the bad smelling materials from Jungni-dong(the place of source) to the housing complex located along a piedmont district.
        49.
        2003.09 KCI 등재 서비스 종료(열람 제한)
        The objective of this research was to test whether, under controlled laboratory conditions, hybrid SNCR/SCR process improves NOx removal efficiency in comparison with the SNCR only. The hybrid process is a combination of a redesigned existing SNCR with a new downstream SCR. NOx reduction experiments using a hybrid SNCR/SCR process have been conducted in simple NO/NH3/O2 gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% or 15% O2. Commercial catalysts, V2O5-WO3-SO4/TiO2, were used for SCR NOx reduction. The residence time and space velocity were around 1.67 seconds and 2,400 h-1 or 6000 h-1 in SNCR and SCR reactors, respectively. NOx reduction of the hybrid system was always higher than could be achieved by SNCR alone at a given value of NH3SLIP. Optimization of the hybrid system performance requires maximizing NOx removal in the SNCR process. An analysis based on the hybrid system performance in this lab-scale work indicates that a equipment with NOxi=500 ppm will achieve a total NOx removal of about 90 percent with NH3SLIP ≤ 5 ppm only if the SNCR NOx reduction is at least 60 percent. A hybrid SNCR/SCR process has shown about 26~37% more NOx reduction than a SNCR unit process in which a lower temperature of 850℃ turned out to be more effective.
        50.
        2003.01 KCI 등재 서비스 종료(열람 제한)
        This paper have examined the optimum combination of SNCR and SCR by varying SNCR injection temperature and NSR ratio along with SCR space velocity. NOx reduction experiments using a SNCR/SCR combined process have been conducted in simple NO/NH3/O2 gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% O2. Commercial catalyst, sulfated V2O5-WO3/TiO2, was used for SCR NOx reduction. The residence time and space velocity were around 1.67 sec, 2,400 h-1 and 6,000 h-1 in the SNCR and SCR reactors, respectively. SNCR NOx reduction effectively occurred in a temperature window of 900~950℃. About 88% NOx reduction was achieved with an optimum temperature of 950℃ and NSR=1.5. SCR NOx reduction using commercial V2O5-WO3-SO4/TiO2 catalyst occurred in a temperature window of 200~450℃. 80~98% NOx reduction was possible with SV=2400 h-1 and a molar ratio of 1.0~2.0. A SNCR/SCR(SV=6000 h-1) combined process has shown same NOx reduction compared with a stand-alone SCR(SV=2400 h-1) unit process of 98% NOx reduction. The NH3-based chemical could routinely achieve SNCR/SCR combined process total NOx reductions of 98% with less than 5 ppm NH3 slip at NSR ranging from about 1.5 to 2.0, SNCR temperature of 900℃~950℃, and SCR space velocity of 6000 h-1. Particularly, more than 98% NOx reduction was possible using the combined process under the conditions of TSNCR=950℃, TSCR=350℃, 5% O2, SV=6000 h-1 and NH3/NOx=1.5. A catalyst volume was about three times reduced by SNCR/SCR combined process compared with SCR process under the same controlled conditions.
        51.
        2002.07 KCI 등재 서비스 종료(열람 제한)
        Air quality monitoring data and meteorology data which had collected from 1995. 1. to 1999. 2. in six areas of Daegu, Manchondong, Bokhyundong, Deamyungdong, Samdukdong, Leehyundong and Nowondong, were investigated to determine the distribution and characteristic of ozone. A equation of multiple regression was suggested after time series analysis of contribution factor and meteorology factor were investigated during the day which had high concentration of ozone. The results show the following; First, 63.6% of high ozone concentration days, more than 60 ppb of ozone concentration, were in May, June and September. The percentage of each area showed that; Manchondong 14.4%, Bokhyundong 15.4%, Deamyungdong 15.6%, Samdukdong 15.6%, Leehyundong 17.3% and Nowondong 21.6%. Second, correlation coefficients of ozone, SO2, TSP, NO2 and CO showed negative relationship; the results were respectively -0.229, -0.074, -0.387, -0.190(p<0.01), and humidity were -0.677. but temperature, amount of radiation and wind speed had positive relationship; the results were respectively 0.515, 0.509, 0.400(p<0.01). Third, R2 of equation of multiple regression at each area showed that; Nowondong 45.4%, Lee hyundong 77.9%, Samdukdong 69.9%, Daemyungdong 78.8%, Manchondong 88.6%, Bokhyundong 77.6%. Including 1 hour prior ozone concentration, R2 of each area was significantly increased; Nowondong 75.2%, Leehyundong 89.3%, Samdukdong 86.4%, Daemyungdong 88.6%, Manchondong 88.6%, Bokhyundong 88.0%. Using equation of multiple regression, There were some different R2 between predicted value and observed value; Nowondong 48%, Leehyundong 77.5%, Samdukdong 58%, Daemyungdong 73.4%, Manchondong 77.7%, Bokhyundong 75.1%. R2 of model including 1 hour prior ozone concentration was higher than equation of current day; Nowondong 82.5%, Leehyundong 88.3%, Samdukdong 80.7%, Daemyungdong 82.4%, Manchondong 87.6%, Bokhyundong 88.5%.
        52.
        2002.06 KCI 등재 서비스 종료(열람 제한)
        The absorption of benzene in nonpolar solution was studied in a laboratory-scale of bubble column varying of gas flow rates and gas-to-liquid ratios. A bubble column had a 0.8~1×10-3 m3 total volume (height 1500 mm, diameter 50 mm). Solution analysis was performed by GC-FID and GC-MSD. The objectives of this research were to select the best absorption fluid and to evaluate the mass transfer characteristics under specific conditions of each absorption. The results of this research were follow as: First, the heat transfer fluid is more efficient than the other nonpolar solution in removing VOC. Second, The benzene removal efficiency improved according to an increasing rate of gas flow. Also, volumetric mass transfer rate of column can be enhanced by increasing gas flow rate. Finally, the relation of gas flow rates, liquid amount, and volumetric mass transfer coefficient was obtained as follows. Kya=0.5906(Vg/L)0.7611 The following correlation of mass transfer coefficient and efficiency was proposed. η=0.06078 Kya0.2444
        60.
        1998.06 KCI 등재 서비스 종료(열람 제한)
        The oil crisis of the 1970s and the rise in oil prices motivated people to implement energy conservation strategies. Buildings were fitted with additional insulation and reduced ventilation rates. The reduction of mechanical and natural ventilation rate led to increases in indoor pollutant concentrations which resulted in increased health risks from indoor exposure to pollutants. The variable-air-volume/bypass filtration system(VAV/BPFS) is a variation of the conventional VAV systems, The VAV/BPFS is an electronically controlled system that provides cost-effective thermal comfort and acceptable indoor air quality. Under controlled conditions in a chamber, a series experiments were performed to compare the ability of a VAV/BPFS to remove indoor aerosol concentration and to reduce energy consumption with that ability of conventional VAV system. Results show that the VAV/BPFS increases the effective ventilation rate and removes indoor air pollutant, and maintains acceptable indoor air quality without sacrificing energy consumption.
        1 2 3 4