검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 962

        41.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A 14-year-old castrated male Shih Tzu presented with acute hemorrhagic vomiting. The initial medical records indicated a probable diagnosis of acute gastritis due to inappropriate food intake. Although gastrointestinal (GI) endoscopy was the preferred diagnostic approach, the client declined anesthesia because of the dog’s underlying heart condition. Therefore, we opted for anesthesia-free capsule endoscopy. The procedure identified severe gastritis with no detectable abnormalities in the other GI regions. Following diagnosis, dietary modifications and omeprazole treatment were initiated, resulting in the resolution of clinical symptoms. Follow- up capsule endoscopy 3 weeks later verified a significant improvement in gastritis. This case highlights the potential of capsule endoscopy as a valuable diagnostic tool in patients presenting with acute vomiting.
        4,000원
        42.
        2023.07 구독 인증기관 무료, 개인회원 유료
        Instagram marketing is a popular tool for communication in the tourism industry. However, research into effective execution tactics has been limited to the content, recipient characteristics, and sender types (e.g., celebrities) (i.e., Ferwerda & Tkalcic, 2018; Jin et al., 2019; Singh, 2020). The layouts of Instagram ads themselves have received little scholarly attention. Instagram ads typically convey multiple pieces of information in a single advertisement unit, raising concerns about the significance of the order in which the information is presented. Specifically, we must understand how different orders of presenting information affect a firm’s performance. Therefore, this study investigates the effect of presentation order on consumer behavioral intentions toward tour programs promoted on Instagram.
        4,000원
        43.
        2023.07 구독 인증기관 무료, 개인회원 유료
        Drawing from the uses and gratification theory (UGT), the study intends to investigate audiences’ motivation to watch Livestream and its influence on subscription and donation. The roles of viewers’ parasocial relationships and identification with live streamers were also examined. The results also indicate the presence of a mediation effect.
        4,000원
        48.
        2023.05 구독 인증기관·개인회원 무료
        The decommissioning of the Nuclear Power Plant (NPP) is a long-term project of more than 15 years and will be carried out as a project, which will require project management skills accordingly. The risk of decommissioning project is a combination of many factors such as the decommissioning plan, the matters licensed by the regulatory agency, the design and implementation of dismantling, the dismantling plan and organization, and stakeholders. There will be some difficulties in risk management because key assumptions about many factors and the contents of major risks should be well considered. Risk management typically performs a series of processes ranging from identification and analysis to evaluation. In order to analyze and evaluate risks here, identification of potential risks is the first step, and in order to reasonably select potential risks, various factors mentioned should be considered. Therefore, the purpose of this study is to identify possible risks that should be considered for the decommissioning project in various aspects. The risk of the decommissioning project can be defined using the hazard keyword, and the risk family presented in the IAEA safety series can also be referred. It would be better to approach the radiological or non-radiological risks that may occur in the dismantling work with the hazard keyword, and if the characteristics of the decommissioning project are reflected, it would be a good idea to approach it on a risk family basis. There are 10 top risks in the risk family, 25 risks at the level 2 and 61 risks at the level 3 are presented. It may be complex to consider these hazards and risks recommended as risk families at the same time, so using the results of safety evaluation as input data for risk identification can be a reasonable approach. Therefore, this study intended to derive the possible risks of the decommissioning project based on the risk family structure. At this point, the reflection of the safety assessment results was intended to be materialized by considering the hazards checklist. As a result, this study defined and example of 38 possible risks for the decommissioning project, considering the 10 top risk family and lower level risk categories. This result is not finalized, and it will be necessary to further strengthened through expert workshops or HAZOP in the future.
        49.
        2023.05 구독 인증기관·개인회원 무료
        The decommissioning of Korea’s nuclear power facilities is expected to take place starting with the Kori Unit 1 followed by the Wolsong Unit 1. In Korea, since there is no experience of decommissioning, considerations of site selection for the waste treatment facilities and reasonable selection methods will be needed. Only when factors to be considered for construction are properly selected and their effects are properly analyzed, it will be possible to operate a treatment facility suitable for future decommissioning projects. Therefore, this study aims to derive factors to be considered for the site selection of treatment facilities and present a reasonable selection methodology through evaluation of these factors. In order to select a site for waste treatment facilities, three virtual locations were applied in this study: warehouse 1 to warehouse 3. Such a virtual warehouse could be regarded as a site for construction warehouses, material warehouses, annexed building sites, and parking lots in nuclear facilities. If the selection of preliminary sites was made in the draft, then it is necessary to select the influencing factors for these sites. The site of the treatment facility shall be suitable for the transfer of the waste from the place where the dismantling waste is generated to the treatment facility. In addition, in order for construction to take place, interference with existing facilities and safety should not be affected, and it should not be complicated or narrow during construction. Considering the foundation and accessibility, the construction of the facility should be economical, and the final dismantling of the facility should also be easy. In order to determine one final preferred plan with three hypothetical locations and five influencing factors, there will be complex aspects and it will be difficult to maintain consistency as the evaluation between each factor progresses. Therefore, we introduce the Analytic Hierarchical Process (AHP) methodology to perform pairwise comparison between factors to derive an optimal plan. One optimal plan was selected by evaluating the three virtual places and five factors of consideration presented in this study. Given the complexity and consistency of multiple influencing factors present and prioritizing them, AHP tools help users make decisions easier by providing simple and useful features. Above all, it will be most important to secure sufficient grounds for pairwise comparison between influencing factors and conduct an evaluation based on this.
        50.
        2023.05 구독 인증기관·개인회원 무료
        Kori Unit 1 is about 600MW Pressurized Light Water Reactor as WH type. KHNP got an approval for construction and operation of Kori unit 1 on May 31, 1972 and started commercial operation from Apr. 29, 1987. And then, it was decided to permanently suspend it on Jun. 18, 2017 after 40 years of commercial operation. The Nuclear Safety Act stipulates that if a commercial nuclear power plant is permanently suspended, the utility must submit a Final Decommissioning Plan (FDP) within 5 years. So, KHNP, the utility, developed a FDP for Kori Unit 1 and submitted it to the government in May 2021. In South Korea, the FDP is to be prepared in accordance with the relevant notices and consists of 11 major chapters such as (1) Decommissioning Plan Overview, (2) Project management, (3) Status of Site and Environmental, (4) Decommissioning Strategies and Method, (5) Ease of Decom. Design characteristic, (6) Safety Analysis, (7) Radiation Protection, (8) Decontamination and Dismantling, (9) Radioactive Waste Management, (10) Environmental Impact Analysis, (11) Fire Protection and (12, 13) Etc., References and Glossary. KHNP has prepared a strategy and system consisting of three areas such as R&D, Engineering and licensing document development to prepare the final decommissioning plan for Kori Unit 1. The promotion system for the preparation of the FDP for Kori Unit 1 is composed of Engineering (HAS Characterization, Dismantling Safety Evaluation, Radiological Environmental Report, Radioactive Waste Treatment and Facility Construction), R&D(KHNP R&D Results such as Process/Work Package /Cost Estimation, Safety Analysis, Contamination and Exposure, Guide for Detailed Characteristic, Site Safety Analysis, RV & RVI Dismantling Process, etc.), Overseas case lessons learned(Taiwan unit 1 NPP FDP and Spain Zorita NPP FDP analysis) and Development of Licensing Document. KHNP completed the initial completion of the Final Decommissioning Plan for Kori Unit 1 in March 2020 and carried out collecting residents’ opinions through public hearings. And then, KHNP supplemented the results of the residents’ opinions and applied for license to the Nuclear Safety and Security Commission in May, 2021. Now, KHNP are responding to the FDP licensing review.
        51.
        2023.05 구독 인증기관·개인회원 무료
        Laser cutting technology capable of remote cutting is being developed to reduce radiation exposure to workers and minimize secondary waste generation when dismantling highly polluted nuclear power plant facilities (reactors, pressurizers, steam generators, coolant pumps, etc.). Laser cutting proceeds in air or water, and at this time, secondary products containing radioactive materials are inevitably generated. In air cutting, dust and aerosol are generated, and in underwater cutting, aerosol, water vapor, dispersed particles (colloid, suspension), sediment (dross, sediment), and radioactive waste liquid are generated. Dispersed particles float in the form of fine particles in water, increasing the turbidity of water as cutting progresses, hindering work, and aerosols contain micrometer-sized particles together with water vapor, which can threaten the safety of workers. Particles dispersed in water and aerosol are within 10% of the mass ratio among secondary products, but the volume they occupy is very large, which can have a significant impact on the environment as well as a burden on treatment capacity. Various characterization methods are being developed to diagnose the generation mechanism and physical and chemical properties of laser cutting secondary products in real time and to secure technologies for collecting and removing dispersed particles and aerosols in water. This study introduces a real-time laser cutting secondary product characteristic evaluation method that can identify the key mechanisms of secondary product generation by analyzing the plasma formation process on laser cutting surface and behavior of aerosol, underwater dispersed particles produced by secondary products, as well as physical and chemical properties in real time with various measurement technologies such as Optical Emission Spectrometer (OES), Particle Size Analyzer (PSA), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM) and Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (ICP-TOF-MS).
        52.
        2023.05 구독 인증기관·개인회원 무료
        For the deep geological repository, engineering barrier system (EBS) is installed to restrict a release of radionuclide, groundwater infiltration, and unintentional human intrusion. Bentonite, mainly used as buffer and backfill materials, is composed of smectite and accessory minerals (e.g. salts, silica). During the post-closure phase, accessory minerals of bentonite may be redistributed through dissolution and precipitation due to thermal-hydraulic gradient formed by decay heat of spent nuclear fuel and groundwater inflow. It should be considered important since this cause canister corrosion and bentonite cementation, which consequently affect a performance of EBS. Accordingly, in this study, we first reviewed the analyses for the phenomenon carried out as part of construction permit and/or operating license applications in Sweden and Finland, and then summarized the prerequisite necessary to apply to the domestic disposal facility in the future. In previous studies in Sweden (SKB) and Finland (POSIVA), the accessory mineral alteration for the post-closure period was evaluated using TOUGHREACT, a kind of thermal-hydro-geochemical code. As a result of both analyses, it was found that anhydrite and calcite were precipitated at the canister surface, but the amount of calcite precipitate was insignificant. In addition, it was observed that precipitate of silica was negligible in POSIVA and there was a change in bentonite porosity due to precipitation of salts in SKB. Under the deep disposal conditions, the alteration of accessory minerals may have a meaningful influence on performance of the canister and buffer. However, for the backfill and closure, this is expected to be insignificant in that the thermal-hydraulic gradient inducing the alteration is low. As a result, for the performance assessment of domestic disposal facility, it is confirmed that a study on the alteration of accessory minerals in buffer bentonite is first required. However, in the study, the following data should reflect the domestic-specific characteristics: (a) detailed geometry of canister and buffer, (b) thermal and physical properties of canister, bentonite and host-rock in the disposal site, (c) geochemical parameters of bentonite, (d) initial composition of minerals and porewater in bentonite, (e) groundwater composition, and (f) decay heat of spent nuclear fuel in canister. It is presumed that insights from case studies for the accessory mineral alteration could be directly applied to the design and performance assessment of EBS, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        53.
        2023.05 구독 인증기관·개인회원 무료
        A variety of microorganisms are contained in the groundwater and surrounding environment at the depth of a deep geological repository, and could adversely affect the integrity and/or safety of the facility under certain thermal, hydraulic and chemical conditions. In particular, microbial activity (in the buffer and backfill) around the canister can cause corrosion of the canister through sulfide production by sulfate-reducing bacteria (SRB), and subsequently promote radionuclide release through the corroded part. Namely, this phenomenon is important in a perspective of performance assessment since it will have an impact on the post-closure exposure dose in the biosphere by accelerating radionuclide leakage into the near-field due to deterioration of the canister integrity In Finland, the performance assessment on microbial activity in buffer, backfill, and plug was performed for the licensing. However, in Korea, researches relevant to microbial activity are only in the early stage as of now. Accordingly, in this study, we draw initial considerations for the performance assessment on the phenomenon in the domestic facility based on review results for the methodology carried out as part of operating license application (i.e. SC-OLA). Studies on the performance assessment of microbial activity in Finland were mainly performed: (a) to investigate complex interactions among microorganisms in the repository by analyzing both indigenous and exogenous microorganisms through drilling, geological and geochemical analysis, (b) to identify microbial interactions at the buffer, backfill, and host rock interface for specific microorganisms that may affect activity of other microorganisms and integrity of the repository, (c) to analyze canister corrosion caused by microbial activity, particularly sulfide production by SRB, and (d) to characterize microbial illitization of montmorillonite that could affect permeability, hydraulic conductivity, and structural integrity of the repository. From reviewing studies above, it is judged that studies labelled as (b) through (d) are applicable to the performance assessment of microbial activity for the domestic facility regardless of specific conditions in Korea. However, for study labelled as (a), the following data on reflecting domestic conditions should be additionally obtained: (1) radionuclide inventory and temperature in spent nuclear fuel, (2) swelling pressure and organic carbon content of bentonite, and (3) size, shape, and gas composition of pores in bentonite. Results of this study could be directly applied to the design and performance assessment for buffer and backfill components, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        54.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.
        1 2 3 4 5