검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.11 구독 인증기관·개인회원 무료
        Properties of bentonite, mainly used as buffer and/or backfill materials, will evolve with time due to thermo-hydro-mechanical-chemical (THMC) processes, which could deteriorate the long-term integrity of the engineered barrier system. In particular, degradation of the backfill in the evolution processes makes it impossible to sufficiently perform the safety functions assigned to prevent groundwater infiltration and retard radionuclide transport. To phenomenologically understand the performance degradation to be caused by evolution, it is essential to conduct the demonstration test for backfill material under the deep geological disposal environment. Accordingly, in this paper, we suggest types of tests and items to be measured for identifying the performance evolution of backfill for the Deep Geological Repository (DGR) in Korea, based on the review results on the performance assessment methodology conducted for the operating license application in Finland. Some of insights derived from reviewing the Finnish case are as follows: 1) The THMC evolution characteristics of backfill material are mainly originated from hydro-mechanical and/or hydrochemical processes driven by the groundwater behavior. 2) These evolutions could occur immediately upon installation of backfill materials and vary depending on characteristics of backfill and groundwater. 3) Through the demonstration experiments with various scales, the hydro-mechanical evolution (e.g. advection and mechanical erosion) of the backfill due to changes in hydraulic behavior could be identified. 4) The hydro-chemical evolution (e.g. alteration and microbial activity) could be identified by analyzing the fully-saturated backfill after completing the experiment. Given the findings, it is judged that the following studies should be first conducted for the candidate backfill materials of the domestic DGR. a) Lab-scale experiment: Measurement for dry density and swelling pressure due to saturation of various backfill materials, time required to reach full saturation, and change in hydraulic conductivity with injection pressure. b) Pilot-scale experiment: Measurement for the mass loss due to erosion; Investigation on the fracture (piping channel) forming and resealing in the saturation process; Identification of the hydro-mechanical evolution with the test scale. c) Post-experiment dismantling analysis for saturated backfill: Measurement of dry density, and contents of organic and harmful substances; Investigation of water content distribution and homogenization of density differences; Identification of the hydro-chemical evolution with groundwater conditions. The results of this study could be directly used to establishing the experimental plan for verifying performance of backfill materials of DGR in Korea, provided that the domestic data such as facility design and site characteristics (including information on groundwater) are acquired.
        2.
        2023.11 구독 인증기관·개인회원 무료
        With the importance of permanent disposal of high-level radioactive waste (HLW) generated in Korea, the deep geological disposal system based on the KBS-3 type is being developed. Since the deep geological repository must provide the long-term isolation of HLW from the surface environment and normal habitats for humans, plants, and animals, it is essential to assess the longterm performance of the disposal facility considering thermal-hydraulic-mechanical-chemical (TH- M-C) evolution. Decay heat dissipated from HLW contained in the canister causes an increase in temperature in the adjacent area. The requirement for the maximum temperature is established in consideration of the possibility of bentonite degradation. Therefore, when designing the repository, the temperature in the region of interest should be identified in detail through the thermal evolution assessment to ensure that the design requirement is satisfied. In the thermal evolution analysis, it is needed to evaluate the temperature distribution over the entire area of the disposal panel to consider the heat generated from both a single canister and adjacent canisters. Computational fluid dynamics (CFD) codes are widely used for detailed temperature analysis but are limited to simulating a wide range. Accordingly, in this study, we developed an analytical solution-based program for efficiently calculating the temperature distribution throughout the deposition panel, which is based on threedimensional heat conduction equations. The code developed can assess the temperature distribution of engineered and natural barrier systems. Principal parameters to be inputted are as follows: (a) geometry of the panel (e.g. width, length, height, spacing between canisters), (b) geometry of the canister (e.g. diameter, height), (c) thermal properties of bentonite and host-rock, (d) initial conditions (e.g. residual heat, temperature), and (e) time information (e.g. canister emplacement rate, time-interval, period). Through the calculation for the conceptual problem of a deposition panel capable of accommodating 900 (i.e. 30×30) canisters, it was confirmed that the program can adequately predict when and where the maximum temperature will occur. It is expected that the overall temperature distribution within the panel can be obtained by the evaluation of the entire region using this program reflecting the detailed design of the repository to be developed in the future. In addition, the thermal evolution analysis considering the influence of other canisters can be performed by applying the results as boundary conditions in the CFD analysis.
        3.
        2023.05 구독 인증기관·개인회원 무료
        For the deep geological repository, engineering barrier system (EBS) is installed to restrict a release of radionuclide, groundwater infiltration, and unintentional human intrusion. Bentonite, mainly used as buffer and backfill materials, is composed of smectite and accessory minerals (e.g. salts, silica). During the post-closure phase, accessory minerals of bentonite may be redistributed through dissolution and precipitation due to thermal-hydraulic gradient formed by decay heat of spent nuclear fuel and groundwater inflow. It should be considered important since this cause canister corrosion and bentonite cementation, which consequently affect a performance of EBS. Accordingly, in this study, we first reviewed the analyses for the phenomenon carried out as part of construction permit and/or operating license applications in Sweden and Finland, and then summarized the prerequisite necessary to apply to the domestic disposal facility in the future. In previous studies in Sweden (SKB) and Finland (POSIVA), the accessory mineral alteration for the post-closure period was evaluated using TOUGHREACT, a kind of thermal-hydro-geochemical code. As a result of both analyses, it was found that anhydrite and calcite were precipitated at the canister surface, but the amount of calcite precipitate was insignificant. In addition, it was observed that precipitate of silica was negligible in POSIVA and there was a change in bentonite porosity due to precipitation of salts in SKB. Under the deep disposal conditions, the alteration of accessory minerals may have a meaningful influence on performance of the canister and buffer. However, for the backfill and closure, this is expected to be insignificant in that the thermal-hydraulic gradient inducing the alteration is low. As a result, for the performance assessment of domestic disposal facility, it is confirmed that a study on the alteration of accessory minerals in buffer bentonite is first required. However, in the study, the following data should reflect the domestic-specific characteristics: (a) detailed geometry of canister and buffer, (b) thermal and physical properties of canister, bentonite and host-rock in the disposal site, (c) geochemical parameters of bentonite, (d) initial composition of minerals and porewater in bentonite, (e) groundwater composition, and (f) decay heat of spent nuclear fuel in canister. It is presumed that insights from case studies for the accessory mineral alteration could be directly applied to the design and performance assessment of EBS, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        4.
        2023.05 구독 인증기관·개인회원 무료
        A variety of microorganisms are contained in the groundwater and surrounding environment at the depth of a deep geological repository, and could adversely affect the integrity and/or safety of the facility under certain thermal, hydraulic and chemical conditions. In particular, microbial activity (in the buffer and backfill) around the canister can cause corrosion of the canister through sulfide production by sulfate-reducing bacteria (SRB), and subsequently promote radionuclide release through the corroded part. Namely, this phenomenon is important in a perspective of performance assessment since it will have an impact on the post-closure exposure dose in the biosphere by accelerating radionuclide leakage into the near-field due to deterioration of the canister integrity In Finland, the performance assessment on microbial activity in buffer, backfill, and plug was performed for the licensing. However, in Korea, researches relevant to microbial activity are only in the early stage as of now. Accordingly, in this study, we draw initial considerations for the performance assessment on the phenomenon in the domestic facility based on review results for the methodology carried out as part of operating license application (i.e. SC-OLA). Studies on the performance assessment of microbial activity in Finland were mainly performed: (a) to investigate complex interactions among microorganisms in the repository by analyzing both indigenous and exogenous microorganisms through drilling, geological and geochemical analysis, (b) to identify microbial interactions at the buffer, backfill, and host rock interface for specific microorganisms that may affect activity of other microorganisms and integrity of the repository, (c) to analyze canister corrosion caused by microbial activity, particularly sulfide production by SRB, and (d) to characterize microbial illitization of montmorillonite that could affect permeability, hydraulic conductivity, and structural integrity of the repository. From reviewing studies above, it is judged that studies labelled as (b) through (d) are applicable to the performance assessment of microbial activity for the domestic facility regardless of specific conditions in Korea. However, for study labelled as (a), the following data on reflecting domestic conditions should be additionally obtained: (1) radionuclide inventory and temperature in spent nuclear fuel, (2) swelling pressure and organic carbon content of bentonite, and (3) size, shape, and gas composition of pores in bentonite. Results of this study could be directly applied to the design and performance assessment for buffer and backfill components, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        5.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.
        6.
        2023.05 구독 인증기관·개인회원 무료
        In buffer, a main component of engineering barrier system (EBS) in the deep geological repository, mass loss is mainly caused by upheave and mechanical erosion. The former is a phenomenon that bentonite in the upper part of the buffer moves to the backfill region due to groundwater intake and swelling. And, the latter is a phenomenon that bentonite on the surface of the buffer moves to the backfill region due to groundwater flow at the interface with host rock as the buffer saturates. Buffer mass loss adversely affects the fulfilment of the safety function of the buffer that is to limit and retard radionuclide release in the event of canister failure. Accordingly, in this paper, we reviewed how to consider this phenomenon in the performance assessment for the operating license application in Finland, and tentatively summarized data required to conduct the analysis for the domestic facility based on the review results. Regarding buffer mass loss, the previous studies carried out in Finland are categorized as follows: 1) experiment on the amount of buffer upheave with groundwater inflow rate (before backfilling), 2) analysis for the amount of buffer upheave with groundwater inflow rate (after backfilling), 3) analysis of buffer erosion rate with groundwater inflow rate, 4) analysis for distribution of the groundwater inflow rate into the buffer for all deposition holes (using ConnectFlow modeling results), and 5) analysis of buffer mass loss with groundwater salinity. Finally, the buffer mass loss distribution table was derived from the results of 1) through 3) by combining with that of 4). Given these studies, the following will be required for the performance assessment for buffer mass loss in the domestic disposal facility: a) distribution table of buffer mass loss for combined interactions taking into account effect of 5) (i.e. 1), 2), 3), and 5) + 4)), and b) Threshold for buffer mass loss starting to negatively affect the fulfilment of the safety function of the buffer. Even though it is judged that the results of this study could be directly applied to developing the design concept of EBS and to conducting the performance assessment in the domestic disposal facility, it is essential to prepare a set of input data reflecting the site-specific design features (e.g. dimension, material used, site, etc.), which include saturation time and groundwater salinity.