검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3,366

        101.
        2023.11 구독 인증기관·개인회원 무료
        This study investigated the effectiveness of various chlorinating agents in partitioning light water reactor spent fuel, with the aim of optimizing the chlorination process. Through thermodynamic equilibrium calculations, the effects of using MgCl2, NH4Cl, and Cl2 as a single chlorinating agent or applying MgCl2, NH4Cl, and Cl2 sequentially for spent fuel chlorination were evaluated Furthermore, in this study, assuming the actual process operation situation, where only a part of the semi-volatile nuclides is removed during the heat treatment process, and including the process of precipitating the molten salt from the chlorination process with K3PO4 and K2CO3 precipitants, the percentage distribution of 50 nuclides in the light water reactor spent fuel into each process stream was quantitatively calculated using the simulation function of the HSC program and tabulated for intuitive viewing. Compared to a single chlorinator, sequential chlorination more effectively separated the heat and radioactivity of the spent fuel from the uranium-dominated product solids. Specifically, the sequential application of the chlorinating agents following heat treatment led to a final solid separation characterized by 93.1% mass retention, 5.1% radioactivity, and 15.4% decay heat, relative to the original spent fuel. The findings underscore that sequential chlorination can be an effective method for spent fuel partitioning, either as a standalone approach or in combination with other partitioning processes such as pyroprocessing.
        102.
        2023.11 구독 인증기관·개인회원 무료
        The Spent Nuclear Fuel (SNF) cladding serves as the first barrier that prevents the release of radioactive materials. It is very important to maintain cladding integrity in SNF management. It is known that the pinch load applied to the cladding can lead to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, a numerical analysis process was proposed to scientifically and systematically evaluate the fracture resistance of cladding with reoriented hydrides under pinch load. The mechanical behavior and fracture of the irradiated cladding under pinch load can be evaluated by Ring Compression Test (RCT). Under the stress field generated by RCT, the cracks propagate more easily through radial hydrides than circumferential hydrides. The δ-hydride which form within the α-zirconium matrix causes a large expansion strain due to the volume difference and voids form at the interface between the hydride and the zirconium matrix. Chan demonstrated that the load needed to form voids and separate the hard hydride precipitates from the Zr matrix is considerably lower than that which initiates brittle fracture of hydrides using a micro-cantilever test. Therefore, we propose a microstructure crack propagation analysis method based on Continuum Damage Mechanics (CDM) that can simulate fracture of hydride, zirconium matrix, and Zr/hydride interface. CDM is possible to simulate the hydride, zirconium matrix, and interface cracking in a continuum model based on cladding deformation. The RCT simulation model was constructed from the microscopic images of irradiated cladding. A pixel-based finite element model was created by separating the hydride, zirconium matrix, and interface using the image segmentation method on a morphology operation basis. The appropriate element size was selected for the efficiency of the analysis and crack propagation using CDM. The force-displacement curves and strain energy from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to evaluate the fracture resistance of the irradiated cladding under the quantified pinch load and to establish the failure criterion of fuel rods under pinch load. The advantages and limitations of the proposed process are discussed.
        103.
        2023.11 구독 인증기관·개인회원 무료
        Hydride reorientation is widely known as one of the major degradation mechanisms in Zirconium cladding during dry storage. Some previous theoretical models for hydride reorientation used assumption of an ideal radial basal pole orientation for HCP structure of Zirconium cladding. Under this assumption, circumferential hydride was considered to precipitate in the basal plane while radial hydride was considered to precipitate in the prismatic plane, thereby giving energetical penalty on thermodynamical precipitation of radial hydrides. However, in reality, reactor-grade Zirconium cladding exhibits average 30° tilted texture, adding complexity to the hydride precipitation mechanism. In this study, reactor-grade Zirconium cladding was charged with hydrogen and hydride reorientation -treated specimens were fabricated. Microstructural characterization of hydrides was conducted via following three methods in terms of interface and stored energy. And this study aimed to compare these characteristics between circumferential and radial hydrides. Using Electron Back Scattered Diffraction (EBSD), the interface was investigated assuming that interface lies parallel to the axial axis of the tube. These were further validated with Transmission Electron Microscope (TEM). In addition, Differential Scanning Calorimetry (DSC) analysis was conducted to calculate the stored energy. This investigation is expected to establish fundamental understanding of how hydrides precipitate in Zirconium cladding with different orientations. And it will also increase the predictability of radial hydride formation and help understanding the mechanical behavior of Zirconium cladding with radial hydrides.
        104.
        2023.11 구독 인증기관·개인회원 무료
        Given the situation in the Republic of Korea that all nuclear power plants are located at the seaside, the interim storage facility is also likely to be located at seaside and the maritime transportation of Spent Nuclear Fuel is considered inevitable. The Republic of Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radionuclides from a submerged transportation cask in the sea. Therefore, there is a need to develop a technology that can assess the impact of immersion accidents and establish a regulatory framework for maritime transportation accidents. The release rate of radionuclides should be calculated from the flow rate through a flow path in the breached containment boundary. According to the cask design criteria, it is anticipated that even under severe accident conditions, the flow path size will be very small. Previous studies have evaluated fluid flow passing through micro-scale channel by integrating internal and external flows within and around a transport cask. As part of the evaluation, a comprehensive “Full-Field Model” incorporating external flow fields and a localized “Local-Field Model” with micro-scale flow paths were constructed. Sub-modeling techniques were employed to couple the flow field calculated by the two models. The aforementioned approach is utilized to conduct the evaluation of fluid flow passing through micro-scale flow paths. This study aims to evaluate fluid flow passing through micro-scale flow paths using the aforementioned CFD (Computational Fluid Dynamics) method and aims to code the findings. The Gaussian Process Regression technique, a machine learning model, is utilized for developing a mathematical metamodel. The selected input parameters for coding are organized and their respective impacts are analyzed. The range of these selected parameters is tailored to suit domestic environments, and computational experiments are planned through Design of Experiments. The flow path size is included as an input parameter in the coded model. In cases where the flow path size becomes extremely small, making it impractical to use CFD techniques for calculations, Poiseuille’s law is employed to calculate the release rate. In this study, a model is developed to evaluate the release rate of radionuclides using CFD and mathematical equations covering the whole possible range of flow path size in a lost cask in the deep sea. The model will be used in the development of a maritime transportation risk assessment code suitable for the situation and environment in Korea.
        105.
        2023.11 구독 인증기관·개인회원 무료
        Korea has an agreement for cooperation with 31 countries, including the United States, Canada, Australia, and Japan. Under the agreement, the obligated items must be used for peaceful purposes, comply with nuclear non-proliferation and international safeguards, and obtain prior consent of shipment in case of enrichment, reprocessing, retransfer. Among them, the United States, Canada, and Australia have signed Administrative Arrangements of Cooperation Agreements (Supplementary Arrangements in Canada) for the international transfer and annual reports of obligated items. When operators submit an annual report, the government compiles and make the annual report based on the data. Ideally, the final report is submitted by the operator should be the national annual report, but in practice, discrepancies occur between sum of the operator’s and goverment’s. In order to resolve these problems and strengthen the linkage between exports contrpol and safeguards, our institute has begun the project to develop an ‘Obligation Tracking System for internationally controlled items (OTS)’. It is believed that obligated items which are unnecessarily included or omitted in annual report could be managed properly by developing OTS for life cycle of the items such as import, disposal/ termination or transfer to other countries. In case of nuclear material, especially, the characteristics of the facilities (e.g., bulk-handling facilities) must be considered and principles of fungibility, equivalence, and proportionality should be applied to materials. In order to computerize these procedures, we would like to propose to adopt the format of Code 10 for obligated item management. Code 10 is the form of the annex to the Korea-IAEA safeguards agreement which includes all records of inventory changes, import/export, and domestic movement of nuclear materials. It is expected to minimize discrepancies between operators’ annual reporting data and national annual reporting and further contribute to enhancing national trust and nuclear transparency.
        106.
        2023.11 구독 인증기관·개인회원 무료
        In the case of nuclear projects, when developing a new reactor type, it is necessary to confirm the reactor type, secure the safety, and especially obtain the construction permit approval of the licensing authority for construction. Schedule management is necessary to carry out nuclear projects, and progress rate management of project progress management is largely composed of three elements: scope management, cost management, and resource management. However, in the case of the small modular reactor (SMR) project currently being carried out, it is difficult to calculate the progress rate including budget and resources due to the nature of the project. Therefore, in the SMR project, it took two years from the beginning to prepare the integrated project master schedule (IPMS) to prepare the draft, and then two revisions were made over a year and a half. In this SMR project, we will consider the entire construction period such as design, purchase and production, construction, commissioning, and operation in terms of scope management. The entire document list was created using the document review and approval sheet created at the beginning of the design. In the PMIS (Project Management Information System), the number of approved documents was calculated by comparing the list of engineering documents. In the purchase production part, the main core equipment such as the primary system nuclear steam supply system (NSSS), the secondary system turbine and condenser, and the man machine interface system (MMIS) are managed. Purchasing and manufacturing management shall be managed so that major equipment can be delivered in a timely manner in accordance with the schedule for delivery of equipment in the IPMS. In order to prevent delays in the start of production, it is necessary to minimize the waiting time for work through advance management tasks such as insurance of drawing, stocking of materials, availability of production facilities, etc. In this way, we decided to carry out the schedule management for the design, purchase and manufacturing part in the SMR project first, and the installation, construction and commissioning part will be prepared for the future schedule management.
        107.
        2023.11 구독 인증기관·개인회원 무료
        The Republic of Korea (ROK), as a member state of the IAEA, is operating the State’s System of Accounting for and Control (SSAC) and conducting independent national inspections. Furthermore, an evaluation methodology for the material unaccounted for (MUF) is being developed in ROK to enhance capabilities of national inspection. Generally, physical and chemical changes of nuclear material are unavoidable due to the operating system and structure of facilities, an accumulation of material unaccounted for (MUF) has been issued. IAEA developed statistical MUF evaluation method that can be applied to all facilities around the world and it mainly focuses on the diversion detection of nuclear materials in facilities. However, in terms of the national safeguard inspection, an evaluation of accountancy in facilities is additionally needed. Therefore, in this research, a new approach to MUF evaluation is suggested, based on the Guide to the Expression of Uncertainty in Measurement (GUM) that an evaluation of measurement uncertainty factors is straightforward. A hypothetical list of inventory items (LII) which has 6,118 items at the beginning and end of the material balance period, along with 360 inflow and outflow nuclear material items at a virtual fuel fabrication plant was employed for both the conventional IAEA MUF evaluation method and the proposed GUM-based method. To calculate the measurement uncertainty, it was assumed that an electronic balance, gravimetry, and a thermal ionization mass spectrometer were used for a measurement of the mass, concentration, and enrichment of 235U, respectively. Additionally, it was considered that independent and correlated uncertainty factors were defined as random factors and systematic factors for the ease of uncertainty propagation by the GUM. The total MUF uncertainties of IAEA (σMUF) and GUM (uMUF) method were 37.951 and 36.692 kg, respectively, under the aforementioned assumptions. The difference is low, it was demonstrated that the GUM method is applicable to the MUF evaluation. The IAEA method demonstrated its applicability to all nuclear facilities, but its calculated errors exhibited low traceability due to its simplification. In contrast, the calculated uncertainty based on the GUM method exhibited high reliability and traceability, as it allows for individual management of measurement uncertainty based on the facility’s accounting information. Consequently, the application of the GUM approach could offer more benefits than the conventional IAEA method in cases of national safeguard inspections where factor analysis is required for MUF assessment.
        108.
        2023.11 구독 인증기관·개인회원 무료
        Understanding the dispersion of xenon isotopes following a nuclear test is critical for global security and falls within the remit of both the Comprehensive Nuclear-Test-Ban Treaty (CTBT) and the International Noble Gas Experiment (INGE). This paper aims to show if it is possible to discriminate the source of xenon releases based on the atmospheric dispersion of xenon isotopes using HYSPLIT. Using ORIGEN and SERPENT simulations, four released scenarios are defined with four different fractionation times (i.e., 1 hour, 1 day, 10 days, and 30 days) after a 1kt TNT equivalent 235U explosion event. These time-delayed release scenarios were selected to certify the possibility of mis-determining xenon release source. We use the Lagrangian dispersion model for atmospheric dispersion to predict the concentration distribution of xenon isotopes under each scenario. The model allows us to better understand how these isotopes would distribute over time and space, offering valuable data for real-world detection efforts. To our knowledge, there have been no researches on the analysis of xenon isotopic ratios considering atmospheric dispersion. In this work, we focused on the atmospheric dispersion using HYSPLIT to characterize the xenon isotopic ratios from nuclear tests. In addition, we compared the xenon isotopic ratios obtained from the atmospheric dispersion with those from ORIGEN calculations, which would be helpful to discriminate the source of the xenon releases.
        110.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical properties of the heat-affected zone welded using the GTAW process on SDSS material used in offshore structures were analyzed. The chemical composition of the specimen material was analyzed using XRF. The microstructure of the heat-affected zone where the plate was welded was examined by SEM, and the ferrite volume fraction was assessed using the point count method of ASTM E562. A lot of ferrite was formed in the overheated weldment region, and In the weld cap where the cooling rate was fast, ferrite was not converted back to austenite and the microstructure was not uniform. From the ferrite phase fraction, it was shown that it can be applied to the pitting resistance equivalent numbers through changes in mechanical properties according to welding conditions.
        4,000원
        114.
        2023.10 구독 인증기관·개인회원 무료
        In this study, Bacillus velesensis TJS119, isolated from freshwater, demonstrated growth inhibition against insect pathogenic fungi. The culture medium of the B. velezensis TJS119 strain underwent sequential fractionation with n-hexane, chloroform, ethyl acetate, n-butanol, and water. Notably, the n-butanol fraction exhibited significant antifungal activity against Metarhizium anisopliae and Beauveria bassiana. LC/MS analysis of antifungal peaks identified the production of various lipopeptides by B. velezensis TJS119, including two types of iturin A (C14, C15), four types of fengycin A (C14, C15, C16, C17), and two types of fengycin B (C16, C17). The antifungal efficacy of Iturin A and Fengycin against insect pathogenic fungi was further validated using the paper disc diffusion method. These findings underscore the potential of B. velezensis TJS119 as a promising candidate for future research and applications in the realm of agricultural biological controls against fungal diseases.
        115.
        2023.10 구독 인증기관·개인회원 무료
        Protaetia brevitarsis seulensis larvae from industrial insects are traditionally recognized as functional health foods in South Korea. We evaluated the immuno-modulatory effects of feeding beneficial microorganism (Bacillus velezensis TJS119) to P. brevitarsis larvae as a dietary source. In this study, we investigated the immune-enhancing activities of P. brevitarsis larvae hot-water extract (PLW) and PLW after treatment with B. velezensis TJS119 (PLWB) using the RAW 264.7 macrophage cell line. We examined the effects of PLWB on cell proliferation, cytokine production, and nitric oxide production in RAW264.7 cells. PLWB showed no cytotoxicity at concentrations ranging from 7.8 to 1,000 μg/mL in RAW264.7 cells. Treatment with PLWB increased the production of nitric oxide and pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)] at doses of 62.5 to 1,000 μ g/mL in RAW264.7 cells. As a result, PLWB exhibited a stronger immune-enhancing effect compared to PLW. In conclusion, the results of this study offer experimental evidence to support the potential utilization of PLWB as an immunity-enhancing nutraceutical ingredient.
        116.
        2023.10 구독 인증기관·개인회원 무료
        Bacillus velezensis TJS119 was isolated from the freshwater, and antagonistic activity against of pathogenic fungi. Strain TJS119 showed a broad spectrum of antagonistic activities many fungal pathogens, including the green muscardine fungus Metarhizium anisopliae. The whole-genome sequence of B. velzensis TJS119 was analyzed using the illumina platform. The genome comprises a 3,809,913 bp chromosome with a G + C content of 46.43%, 3,834 total genes, 10 rRNA and 73 tRNA genes. The genome contained a total of 8 candidate gene clusters (difficidin, fengycin, bacillaene, macrolactin, bacillibactin, bacilysin, surfactin and butirosin) to synthesize secondary metabolite biosynthesis. Overall, our data will aid future studies of the biocontrol mechanisms of B. velezensis TJS119 and promote its application in insect disease control.
        117.
        2023.10 구독 인증기관·개인회원 무료
        Fruit Flies (Diptera: Tephritidae) are polyphagous, highly invasive pests in which female adults lay eggs under the skin of fruit and larvae damage the fruit. Among them, the Oriental Fruit Fly, Bactrocera dorsalis (Hendel) was first reported in Taiwan and is distributed throughout much of Southeast Asia, including Vietnam, as well as on the African continent and in the Pacific region. In order to prevent the introduction of pests into country, the Animal and Plant Quarantine Agency has designated them as prohibited pests and is conducting surveillance and investigation on their occurrence. The experimental countries were Taiwan and Vietnam, and statistical analysis was conducted based on the number of B. dorsalis caught by setting up traps for about 8 months. Methly eugenol (ME; 4-allyl-1,2-dimethoxy-benzene) is a widely distributed natural plant and is used because it strongly attracts males of B. dorsalis. The experiments aimed to verify the effect of attractant formulations (liquid, solid, wax) and traps (Delta trap, Lynfield trap, Steiner trap) on B. dorsalis.
        118.
        2023.10 구독 인증기관·개인회원 무료
        유기농업자재 제조 원료가 되는 주요 식물인 제충국, 고삼, 데리스, 님 등은 대부분 수입에 의존하고 있는 실정 으로 제품수급, 효용성 및 안전성 등에 빈번한 문제가 발생되고 있다. 이러한 문제점을 해결하기 위하여 국내 자생식물을 추출물 원료로 이용하기 위한 연구를 수행하고 있다. 이중 마트린이 함유되어 살충제로 이용되고 있는 고삼에 흰가루병, 총채벌레, 줄붉은들명나방, 담배거세미나방, 거품벌레류가 발생하여 피해를 주었다. 특 히 줄붉은들명나방(Uresiphita prunipennis)은 7월 하순부터 9월 중순까지 발생하여 엽육을 갉아먹고 엽맥만 남기는 피해를 주었고, 피해주율은 11% 였다. 이를 방제하기 위해 18종의 유기농업자재의 살충효과를 조사한 결과 주성분이 마늘추출물 80%, 데리스추출물 70% 등인 자재 6종이 80% 이상의 살충률을 나타내었다.
        119.
        2023.10 구독 인증기관·개인회원 무료
        Sweet persimmons are valuable commodity in the export market. However, present of insect pest such as Asiacornococcus kaki can cause limit to many export markets. In this study, ethyl formate(EF), as alternative to methyl bromide(MB), was used in scale-up commercial trial(20ft reefer). Application of 50 g/m3 of EF for 6 hours at 5 ℃ showed proven efficacy against all developmental stages of A. kaki without LLDPE-packaging fruits and no phytotoxic damage on sweet persimmons. This study demonstrated that EF fumigation can be effectively control to target A. kaki before packaging with LLDPE-film of fruits.
        120.
        2023.10 구독 인증기관·개인회원 무료
        As global warming and consumer’s preference for tropical/subtropical fruits increase, the number of orchards cultivating tropical/subtropical fruits in Korea is increasing. Accordingly, concerns about the introduction of exotic invasive pests that host tropical fruits. In this study, efficacy of ethyl formate(EF), as alternative to methyl bromide(MB), was evaluated. Commercial trial of EF was conducted in mango post-harvest storage conditions for controlling Scirtothrips dorsalis. Application of 10 g/m3 of EF for 4 hours at 10 ℃ showed proven efficacy on S. dorsalis without any phytotoxic damage on mango fruits in that condition.