검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,006

        166.
        2022.10 구독 인증기관·개인회원 무료
        Kori-1, the nuclear power plants in South Korea, first started operation in April 1978 and was suspended permanently in 2017. The saturation rate time of spent nuclear fuel generated by major nuclear power plants operating in Korea are getting closer. If we fail to dispose spent nuclear fuel, which is equivalent to high-level radioactive waste, the nuclear power plants will have to be shutdown. High-level radioactive waste is permanently disposed through a deep geological disposal system because it contains long-term half-life nuclides and emits high energy. To select the deep geological disposal site and construct the disposal facilities, it is necessary to establish appropriate regulatory policies accordingly. The status of database construction in OECD-NEA, NRC, SITEX, and IAEA, which provides safety regulations for deep geological disposal system, stipulates each requirement for dismantling nuclear power plants. However, details such as specific figures are not specified, and guidelines for the disposal of high-level radioactive wastes are not clearly distinguished. In Korea, the CYPRUS program, an integrated database system, has been developed to support comprehensive performance evaluation for high-level waste disposal. However, due to several difficult situations, maintenance and upgrades have not been performed, so the research results exist only in the form of raw data and the new research results have not been reflected. Other than that, there is no preemptive basis for regulating the deep geological disposal system. With real-time database, we can develop a regulatory system for the domestic deep disposal system by systematically analyzing the regulatory condition and regulatory case data of international organizations and foreign leading countries. The database system processed and stored primary data collected from nuclear safety reports and other related data. In addition, we used relational database and designed table to maximize time and space efficiency. It is provided in the form of a web service so that multiple users can easily find the data they want at the same time. Based on these technologies, this study established a database system by analyzing the legal systems, regulatory standards, and cases of major foreign leading countries such as Sweden, Finland, the United States, and Japan. This database aims to organize data for each safety case component and further prepare a safety regulatory framework for each stage of development of disposal facilities suitable for the domestic environment.
        172.
        2022.10 구독 인증기관·개인회원 무료
        As the saturation rate of temporary storage facilities for spent nuclear fuel increases, regulatory demands such as interim storage and permanent disposal of spent nuclear fuel are expected to begin in earnest. Considering the domestic situation where all nuclear power plants are located on the waterfront site, the interim storage site is also likely to be located on the waterfront site, and maritime transportation is one of the essential management stages. Currently, there are no independently developed maritime transportation risk assessment code in Korea, and no research has been conducted to evaluate the release of radioactive waste due to the sinking of transport container. Therefore, it is necessary to secure technology to properly reflect the domestic maritime transportation environment and to assess the impact of the sinking accident and to carry out safety regulations. To accurately calculate the releaser rate of radionuclides contained in a cask with breached containment boundary, the flow rate through the gap generated in the containment boundary should be calculated. The fluid flow through this gap which is probably in micro scale in most situations should be evaluated combining the fluid flow inside and outside the cask. In this study, a detailed computational fluid dynamics model to evaluate the internal fluid flow in the cask and a simplified model to capture the fluid flow and the heat transfer around the cask in the sea are constructed. The results for the large scale model are compared with the analytic formula for verification of heat transfer coefficient and they showed good agreements. The heat transfer coefficient thus found can be used in the detailed model to provide more realistic data than those obtained from assumed heat transfer coefficient around the surface of the cask. In the future, fluid flow through the gap between the lid and the body of the cask will be evaluated coupling the models developed in this work.