검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 643

        1.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A force-free field (FFF) is determined solely by the normal components of magnetic field and current density on the entire boundary of the domain. Methods employing three components of magnetic field suffer from overspecification of boundary conditions and/or a nonzero divergence-B problem. A vector potential formulation eliminates the latter issue, but introduces difficulties in imposing the normal component of current density at the boundary. This paper proposes four different boundary treatment methods within the vector potential formulation. We conduct a comparative analysis of the vector potential FFF solvers that we have developed incorporating these methods against other FFF codes in different magnetic field representations. Although the vector potential solvers with the new boundary treatments do not outperform our poloidal-toroidal formulation code, they demonstrate comparable or superior performance compared to the optimization code in SolarSoftWare. The methods developed here are expected to be readily applied not only to force-free field computations but also to time-dependent data-driven simulations.
        4,300원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hypertension is characterized by excessive renin-angiotensin system activity, leading to blood vessel constriction. Several synthetic compounds have been developed to inhibit renin and angiotensin-converting enzyme (ACE). These drugs often have adverse side effects, driving the exploration of plant protein-derived peptides as alternative or supplementary treatments. This study assessed the phenolic compound and amino acid content and the antioxidant and antihypertensive activity of 5 South Korean staple crops. Sorghum had the highest phenolic compound content and exhibited the highest antioxidant activity. Millet grains, particularly finger millet (38.86%), showed higher antihypertensive activity than red beans (14.42%) and sorghum (17.16%). Finger millet was found to contain a large proportion of branched-chain, aromatic, and sulfur-containing amino acids, which are associated with ACE inhibition. In particular, cysteine content was positively correlated with ACE inhibition in the crops tested (r=0.696, p<0.01). This study confirmed that the amino acid composition was more correlated with the antihypertensive activity of grains than the phenolic compound content. Finger millet mainly contained amino acids, which have higher ACE inhibitory activity, resulting in the strongest antihypertensive activity. These findings underscore the antihypertensive potential of select crops as plant-based food ingredients, offering insight into their biological functions.
        4,200원
        5.
        2023.11 구독 인증기관·개인회원 무료
        The operation of nuclear facilities involves the potential for on-site contamination of soil, primarily resulting from pipe leaks and other operational incidents. Globally, decommissioning process for commercial nuclear power plants have revealed huge-amounts of soil waste contaminated with Cs-137, Sr-90, Co-60, and H-3. For example, Connecticut Yankee in the United States produced approximately 52,800 ton of contaminated soil waste, constituting 10% of the total waste generated during its decommissioning. Environmental remediation costs associated with nuclear decommissioning in the US averaged $60 million per unit, representing a significant 10% of the whole decommissioning expenses. Consequently, this study undertook a preliminary investigation to identify important factors for establishing a site remediation strategy based on radionuclide- and site-specific media- characteristics, focusing the efficiency enhancement for the environmental remediation. The factors considered for this investigation were categorized into physical/environmental, socioeconomic, technical, and management aspects. Physical/environmental factors contained the site characteristics, contamination levels, and environmental sensitivity, while socio-economic factors included the social concerns and economic costs. Technical and management factors included subcategories such as technical considerations, policy aspects, and management factors. Especially, technical factors were further subdivided to consider the site reuse potential, secondary waste generation by site remediation, remediation efficiency, and remediation time. Additionally, our study focused the key factors that facilitate the systematic planning for the site remediation, considering the distribution coefficient (Kd) and hydrogeological characteristics associated with each radionuclide in specific site conditions. Therefore, key factors in this study focus the geochemical characteristics of site media including the particle size distribution, chemical composition, organic and inorganic constituents, and soil moisture content. Moreover, the adsorption properties of site media were examined concerning the distribution coefficient (Kd) of radionuclides and their migration characteristics. Furthermore, this study supported the development of a conceptual framework, containing the remediation strategies that incorporate the mobility of radionuclides, according to the site-specific media. This conceptual framework would necessitate the spatial analysis techniques involving the whole contamination surveys and radionuclide mobility modeling data. By integrating these key factors, the study provides the selection and simulation of optimal remediation methods, ultimately offering the estimated amounts of radioactive waste and its disposal costs. Therefore, these key factors offer foundational insights for designing the site remediation strategies according the sitespecific information such as the distribution coefficient (Kd) and hydrogeological characteristics.
        6.
        2023.11 구독 인증기관·개인회원 무료
        Korea Atomic Energy Research Institute (KAERI) has been operating the Post Irradiation Examination Facility (PIEF) for fuel examinations. The facility has pools and hot cells for handling and examining fuel assemblies and rods. Among the hot cells, the second cell is for measuring rod internal pressure (RIP) and then cutting the rod to make samples for destructive tests. Currently, the cutting machine is broken, so it has to be replaced. Because the existing cutting machine consists of many parts and its size was quite a bit large to handle and treat for the radioactive waste disposal, the disassembly work has been performed to make it smaller using manipulators. The drawings of the cutting machine were reviewed and the disassembly tools were developed considering workability when the work performed at the hot cell using the manipulators. The large parts such as motor, mirror and cable, etc., were able to be disassembled and the machine size became so smaller that it could be easily handled for the disposal.
        7.
        2023.11 구독 인증기관·개인회원 무료
        We conducted safety assessments for the disposal of spent resin mixed waste after the removal of beta radionuclides (3H, 14C) in a landfill facility. The spent resin tank of Wolsong nuclear power plant is generated by 8:1:1 weight ratio of spent ion exchange resin, spent activated carbon and zeolite. Waste in the spent resin tank was classified as intermediate-level radioactive waste due to 14C. Other nuclides such as 60Co and 137Cs exhibit below the low-level radioactive waste criteria. The techniques for separating mixed waste and capturing 14C have been under development, with a particular focus on microwave-based methods to remove beta radionuclides (3H, 14C) from spent activated carbon and spent resin within the mixed waste. The spent resin and activated carbon within the waste mixture exhibits microwave reactivity, heated when exposed to microwaves. This technology serves as a means to remove beta isotopes within the spent resin, particularly by eliminating 14C, allowing it to meet the low-level radioactive waste criteria. Using this method, the waste mixture can meet disposal requirements through free water and 3H removal. These assessments considered the human intrusion scenarios and were carried out using the RESRAD-ONSITE code. The institutional management period after facility closure is set at 300 years, during which accidental exposures resulting from human intrusion into the disposal site are accounted for. The assessment of radiation exposure to intruders in a landfill facility included six human intrusion scenarios, such as the drilling scenario, road construction scenario, post-drilling scenario, and post-construction scenario. Among the six human intrusion scenarios considered, the most conservative assessment about annual radiation exposure was the post-drilling scenario. In this scenario, human intrusion occurs, followed by drilling and residence on the site after the institutional management period. We assumed that some of the vegetables and fruits grown in the area may originate from contaminated regions. Importantly, we confirmed that radiation doses resulting from post-institutional management period human intrusion scenarios remain below 0.1 mSv/y, thus complying with the annual dose limits for the public. This research underscores the importance of effectively managing and securing radioactive waste, with a specific focus on the safety of beta radionuclide-removed waste during long-term disposal, even in the face of potential human intrusion scenarios beyond the institutional management period.
        8.
        2023.11 구독 인증기관·개인회원 무료
        For efficient design and manufacture of PWR spent fuel burnup detector, data simulated with various condition of spent fuel in the NPP storage pool is required. In this paper, to derive performance requirements of spent fuel burnup detector for neutron flux and dose rates were evaluated at various distances from CE16 and WH17 types of fuel, representatively. The evaluation was performed by the following steps. First, the specifications of the spent fuel, such as enrichment, burnup, cooling time, and fuel type, were analyzed to find the conditions that emit maximum radioactivity. Second, gamma and neutron source terms of spent fuel were analyzed. The gamma source terms by actinides and fission products and neutron source terms by spontaneous and (α, n) reactions were calculated by SCALE6 ORIGAMI module. Third, simulation input data and model were applied to the evaluation. The material composition and dose conversion factor were referred as PNNL-15870 and ICRP-74 data, respectively and dose rates were displayed with the MCNP output data. It was assumed that there was only one fuel modeled by MCNP 6.2 code in pool. The evaluation positions for each distance were selected as 5 cm, 10 cm, 25 cm, 50 cm, and 1 m apart from the side of fuel, respectively. Fourth, neutron flux and dose rates were evaluated at distance from each fuel type by MCNP 6.2 code. For WH 17 types with a 50 GWd/MTU burnup from 5 cm distance close to fuel, the maximum neutron flux, gamma dose rates and neutron dose rates are evaluated as 1.01×105 neutrons/sec, 1.41×105 mSv/hr and 1.61×101 mSv/hr, respectively. The flux and dose rate of WH type were evaluated to be larger than those of CE type by difference in number of fuel rods. The relative error for result was less than 3~7% on average secured the reliability. It is expected that the simulated data in this paper could contribute to accumulate the basic data required to derive performance requirements of spent fuel burnup detector.
        9.
        2023.11 구독 인증기관·개인회원 무료
        EU taxonomy requires to solve problems for safe management of radioactive waste and disposal of spent fuel, which is a precondition for growing demand for nuclear power plant. Currently, Korea manages about 18,000 tons of high-level radioactive waste at temporary storage facilities in nuclear power plant sites, but such temporary storage facilities are expected to become saturated sequentially from 2031. Therefore, it is necessary to secure a permanent disposal facility to safely treat high-level radioactive waste. In accordance with the second basic plan for high-level radioactive waste management in 2021, it is necessary to establish requirements for regulatory compliance for the site selection and site acquisition, investigation and evaluation, and construction for the establishment of a deep geological disposal facility. In this study, we analyzed the regulatory policies and cases of leading foreign countries related to deep geological disposal facilities for high-level radioactive waste disposal waste such as IAEA, USA, Sweden, and Finland using data analysis methodology. To analyze a large amount of textbased document data, text mining is applied as a major technology and a verification standard that secures validity and safety based on the regulatory laws described so far is developed to establish a regulatory base suitable for domestic deep geological disposal status. Based on the collected data, preprocessing and analysis with Python were performed. Keywords and their frequency were extracted from the data through keyword analysis. Through the measured frequency values, the contents of the objects and elements to be regulated in the statutory items were grasped. And through the frequency values of words co-occurring among different sections through the analysis of related words, the association was obtained, and the overall interpretation of the data was performed. The results of analyzing regulations of major foreign countries using text mining are visualized in charts and graphs. Word cloud can intuitively grasp the contents by extracting the main keywords of the contents of the regulations. Through the network connection graph, the relationship between related words can be visually structured to interpret data and identify the causal relationship between words. Based on the result data, it is possible to compare and analyze the factors to be supplemented by analyzing domestic nuclear safety case and regulations.
        11.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of food packaging materials with mechanical and antimicrobial properties is still a major challenge. N, P-doped carbons (NPCs) were synthesized. Poly(butylene adipate-co-terephthalate) (PBAT), which has an adverse effect on the environment and affects petroleum resources, has been commonly used for applications as food packaging. The development of PBAT composites reinforced with NPCs and studies on their structure and antimicrobial properties are presented in this study. The composite materials in the PBAT/NPCs were processed by solution casting. The plasticizing properties of NPCs enhanced the mechanical strength of composites produced of PBAT and NPCs. The thermal properties of PBAT composites were enhanced with addition of NPCs, according to thermogravimetric analysis (TGA). After reinforcement, PBAT/NPCs composites became more hydrophobic, according to contact angle measurements. In studies against S. aureus and E. coli food-borne pathogenic bacteria, the obtained composites show noticeably improved antimicrobial activity. The composite materials, according to the results of PBAT and NPCs may be a good choice for packing for food that prevents microorganisms.
        4,000원
        12.
        2023.10 구독 인증기관·개인회원 무료
        본 연구는 주변 환경의 차이에 따른 화분매개곤충의 유입 특성을 파악하기 위하여 국립수목원 내 진화속을걷 는정원과 부추속전문전시원에 식재된 울릉산마늘의 화분매개곤충을 조사하였다. 2023년 5월 22일부터 6월 2일 까지 꽃이 70% 이상 개화하였을 때 포충망을 활용하여 8일간 곤충을 채집하였고, 각 전시원 별 식생(피도), 기후 (온도·습도·조도)를 조사하였다. 조사 결과 진화속을걷는정원에서 피도 60% 온도 26.4℃, 습도 31.5%, 조도 40953.6lx, 화분매개곤충 20과 450개체, 부추속전문전시원은 피도 90%, 온도 25.6℃, 습도 31.6%, 조도 6387lx, 화분매개곤충 15과 196개체로 나타났다. 온도와 조도가 상대적으로 높은 진화속을걷는정원이 채집된 곤충의 다양성과 방문 빈도가 높았다. 시간대별 곤충의 방문 빈도를 비교해본 결과 온도와 조도는 개체수가 증가할 때 같이 증가하는 경향을 보였으며, 습도는 반대의 경향을 보였다.
        13.
        2023.10 구독 인증기관·개인회원 무료
        The growth characteristics according to temperature conditions were investigated in the breeding room of the Sericulture & Entomology Experiment Station for Oriental garden crickets(Teleogryllus emma Ohmachi et Matsuura) and Modeagali-crickests(Loxoblemmus doenitzi Stein) collected from the lawns of Byeonsan-myeon, Buan-gun, Jeollabuk-do. The temperature conditions were 6 treatments from 15°C to 40°C at 5°C intervals using a multi-incubator, and the development period and mortality rate by age were compared using the 28°C breeding room conditions as a control. For T. emma, the higher the temperature, the shorter the total development period was, and the same trend was observed for the growth period by age stage. However, at low temperatures of 15°C and 20°C, all died after the third instar, and at high temperatures above 35°C, all died during development. At 25°C and 30°C, they developed normally, and the mortality rate was about 25%. The L. doenizi had the same tendency as the T. emma, with the higher the temperature, the shorter the development period. The total development period was 57.7 days at 25°C, which was similar to the T. emma's 55.9 days, and the mortality rate was the lowest at 44% at 25°C.
        16.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.
        4,000원
        17.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silene fissipetala Turcz., which is native to Continental China and Taiwan, was newly found in Chungcheongnam-do, Korea. S. fissipetala is similar to the related taxa S. antirrhina L., S. armeria L., and S. koreana Kom. in that it has glutinous zones. However, S. fissipetala is distinguished from the congeneric species by the presence of laciniate at the petals. The species grows on slopes and roadsides, suggesting that it is likely to have been introduced through the installation of green sites and road construction. A precise description, photographs, voucher specimens and a key to related taxa are provided.
        4,000원
        18.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biomass-derived porous carbon is an excellent scientific and technologically interesting material for supercapacitor applications. In this study, we developed biomass-derived nitrogen-doped porous carbon nanosheets (BDPCNS) from cedar cone biomass using a simple KOH activation and pyrolysis method. The BDPCNS was effectively modified at different temperatures of 600 °C, 700 °C, and 800 ℃ under similar conditions. The as-prepared BDPCNS-700 electrode exhibited a high BET surface area of 2883 m2 g− 1 and a total pore volume of 1.26 cm3 g− 1. Additionally, BDPCNS-700 had the highest electrical conductivity (11.03 cm− 1) and highest N-doped content among the different electrode materials. The BDPCNS-700 electrode attained a specific capacitance of 290 F g− 1 at a current density of 1 A g− 1 in a 3 M KOH electrolyte and an excellent longterm electrochemical cycling stability of 93.4% over 1000 cycles. Moreover, the BDPCNS-700 electrode had an excellent energy density (40.27 Wh kg− 1) vs power density (208.19 W kg− 1). These findings indicate that BDPCNS with large surface areas are promising electrode materials for supercapacitors and energy storage systems.
        4,300원
        19.
        2023.05 구독 인증기관·개인회원 무료
        Tritium is a radioactive isotope of hydrogen with a half-life of about 12.3 years, and it is commonly found in the environment as a result of the production of Nuclear Power Plants. The World Health Organization (WHO) has established guidelines for the permissible levels of tritium in drinking water. The guideline value for tritium in drinking water is 10,000 Bq/L. It is important to note that the guideline value for tritium is not a legal limit, but rather a recommendation. National and local authorities may establish legal limits that are more restrictive than the WHO guideline value based on local conditions and risk assessments. The Australia and Finland have set a limit for tritium in drinking water at 76,103 Bq/L and 30,000 Bq/L respectively, which is more than three to seven times higher compare to guideline value of WHO. The United States Environmental Protection Agency (EPA) has set a maximum contaminant level (MCL) for tritium in drinking water at 20,000 picocuries per liter (pCi/L), which is equivalent to 740 Bq/L. The Health Canada has set a guideline value for tritium in drinking water at 7,000 Bq/L. Assuming drinking water corresponding to each tritium limit (or guideline value) for one year, the expected exposure dose is 0.01 mSv to 1 mSv. It means that the tritium in drinking water below the limits or guideline value does not pose a significant risk to human health.
        20.
        2023.05 구독 인증기관·개인회원 무료
        Natural uranium-contaminated soil in Korea Atomic Energy Research Institute (KAERI) was generated by decommissioning of the natural uranium conversion facility in 2010. Some of the contaminated soil was expected to be clearance level, however the disposal cost burden is increasing because it is not classified in advance. In this study, pre-classification method is presented according to the ratio of naturally occurring radioactive material (NORM) and contaminated uranium in the soil. To verify the validity of the method, the verification of the uranium radioactivity concentration estimation method through γ-ray analysis results corrected by self-absorption using MCNP6.2, and the validity of the pre-classification method according to the net peak area ratio were evaluated. Estimating concentration for 238U and 235U with γ-ray analysis using HPGe (GC3018) and MCNP6.2 was verified by 􀟙-spectrometry. The analysis results of different methods were within the deviation range. Clearance screening factors (CSFs) were derived through MCNP6.2, and net peak area ratio were calculated at 295.21 keV, 351.92 keV(214Pb), 609.31 keV, 1120.28 keV, 1764.49 keV(214Bi) of to the 92.59 keV. CSFs for contaminated soil and natural soil were compared with U/Pb ratio. CSFs and radioactivity concentrations were measured, and the deviation from the 60 minute measurement results was compared in natural soil. Pre-classification is possible using by CSFs measured for more than 5 minutes to the average concentration of 214Pb or 214Bi in contaminated soil. In this study, the pre-classification method of clearance determination in contaminated soil was evaluated, and it was relatively accurate in a shorter measurement time than the method using the concentrations. This method is expected to be used as a simple pre-classification method through additional research.
        1 2 3 4 5