이 연구는 동절기 노면 결빙 또는 블랙아이스 저감을 위하여 상변화물질을 혼입한 포장용 콘크리트의 온도변화 및 역학적 특성을 파악한 것이다. 이를 위하여 마이크로캡슐로 코팅된 상변화물질을 단위시멘트량의 30%까지 혼입한 포장용 콘크리트를 배합하 여 온도측정용 실험체 및 강도시험용 공시체를 제작하였다. 온도측정은 실험체의 표면과 내부에서 열화상카메라와 열전대를 이용하였 으며, 강도시험은 각 배합마다 3개씩 제작된 공시체를 이용하여 휨 및 압축강도 시험을 실시하였다. 실험결과에 따르면, 상변화물질을 혼입한 포장 콘크리트 노면의 온도는 보통 콘크리트와 비교하여 최대 2도 상승하였으며, 내부의 온도는 깊이와 혼입률에 따라 최대 3-4도 상승하였다. 그리고, 압축강도는 상변화물질 혼입률에 따라 감소하였으나, 모든 혼입률에서 국가건설기준에서 규정하는 설계기 준강도를 만족하였다. 휨강도 역시 보통 포장 콘크리트와 비교하여 감소하였으나, 압축강도와 다르게 상변화물질 혼입률에 따라 휨강 도는 증가하였으며, 30%에서는 설계기준강도를 만족하였다. 이상과 같은 연구결과에 따라 마이크로캡슐형 상변화물질은 노면과 내부 에서 온도상승 효과가 있으며, 기준 또는 지침에서 규정하는 기준강도를 만족하므로 동절기 콘크리트 포장에 적용이 가능할것으로 판단된다.
이 연구는 셀룰로오스 또는 실리카를 포함하고 있는 목재, 왕겨 및 축분 바이오차로 시멘트 또는 잔골재를 대체한 콘크리트 의 강도시험을 통하여 역학적 특성을 파악한 것이다. 시험결과에 따르면, 바이오차 종류에 따른 강도는 왕겨 바이오차 혼입 콘크리트가 가장 크고, 다음으로 목재 바이오차였으며, 축분 바이오차가 가장 낮은 것으로 나타났다. 그리고 시멘트 또는 잔골재의 대체율에 따른 콘크리트 강도는 왕겨 바이오차의 대체율이 증가할수록 강도가 감소하였으나, 목재 및 축분 바이오차의 경우에는 대체율에 따라 강도 가 증가 하였다. 또한, 바이오차를 혼입하지 않은 보통 콘크리트와 비교하여 왕겨, 목재 및 축분 바이오차 순으로 최대 강도가 90%에 서 99%까지였으며, 압축강도로 추정하는 휨강도 또는 쪼갬인장강도 또한 보통 콘크리트의 상관 계수와 비슷하였다. 이와 같은 시험결 과를 근거로, 바이오차를 혼합한 콘크리트의 역학적 특성은 대체율에 따른 차이에도 불구하고 보통 콘크리트와 비슷한 강도를 확보할 수 있으므로 바이오차를 콘크리트의 새로운 혼화재료로 사용할 수 있을 것으로 판단된다.
콘크리트 구조의 인장 보강재로 주로 사용되는 철근은 높은 인장강도와 연성이 우수한 변형 특성에 도 불구하고 부식이 발생할 수 있다는 단점을 갖고 있다. 이러한 문제점을 개선하기 위하여 부식이 발 생하지 않는 다양한 재료 중 FRP(Fiber Reinforced Polymer)를 철근과 유사한 형태의 Rod로 제작하 여 철근을 대체하는 보강재로 사용하기 위한 연구가 진행되고 있다. 그중에서도 인장강도가 우수한 탄 소 및 유리섬유를 일방향으로 성형하고 Rod 표면을 굴곡 처리한 CFRP 및 GFRP 보강근을 중심으로 콘크리트 구조에 적용하기 위한 연구가 활발하게 진행되고 있다. 이 연구에서는 FRP Rod를 보강근으 로 하는 콘크리트 부재의 부착특성과 균열폭, 처짐과 같은 사용성 평가에 중요한 역할을 하는 인장강 화효과를 포함한 균열거동 특성을 파악하기 위하여 단변의 피복두께와 FRP 보강근 지름의 비를 1.0에 서 3.5 까지 0.5배씩 증가하는 직사각형 단면을 갖는 길이 1,000mm의 인장부재를 제작하여 만능재료 시험기(Universal Testing Machine)를 이용한 직접인장실험을 수행한 후, 피복두께와 FRP 보강근의 지름 비에 따른 균열거동(Cracking Behavior) 및 인장강화효과(Tension Stiffening Effect)를 분석하고 현행 설계기준의 규정과 비교하였다. 작용하중에 따라 발생하는 균열에 대해서 횡방향균열(Transverse Crack)과 쪼갬균열(Splitting Crack)로 각각 구분하고, DAQ(Data Acquisition) 시스템을 이용하여 콘 크리트 인장부재에 매입된 CFRP 및 GFRP 보강근의 변형량 및 작용하중을 측정하였으며, 그 결과로 부터 하중-변형률 관계로 대표되는 인장강화효과를 분석하였다. 균열거동 및 인장강화효과를 분석한 결과, CFRP 또는 GFRP Rod를 보강근으로 하는 콘크리트 인장부재는 FRP 보강근과 콘크리트의 부 착강도를 감소시키는 쪼갬균열이 발생하지 않도록 피복두께를 보강근 지름의 2.5배 이상 확보하였을 때, 각 보강근별로 극한강도 fu의 60-70%에 해당하는 하중이 작용하는 단계에서 인장강화효과는 우 수한 것으로 나타났으며, 철근을 보강근으로 하는 현행 설계기준의 규정으로 예측한 결과보다 우수한 인장강화효과를 얻을 수 있음을 확인하였다.
고정반복법에 의한 암시적 HHT 시간적분법을 이용하여 3층 3경간 철근콘크리트 골조구조물을 수치해석모형과 물리적 분구조모형으로 나누어 실시간 하이브리드실험을 실시하였다. 물리적 부분구조모형으로는 1층 내부 비연성기둥 1개소가 선택되었고, 수치해석모형에 일축 방향의 지진하중을 시편이 심한 손상에 의하여 파괴에 이를 때까지 작용시켰다. 비선형 유한요소해석 프로그램인 Mercury가 실시간 하이브리드실험을 위하여 새로이 개발 및 적용되었다. 실험결과는 물리적 부분구조모형의 상부 수평방향 층간변위비를 OpenSees에 의한 수치해석시뮬레이션과 진동대실험의 그것과 비교하였다. 본 실험은 가장 복잡한 실시간 하이브리드실험 중의 하나이고, 하드웨어, 알고리즘 그리고 모형에 대한 기술적인 내용을 본 논문에 자세히 설명하였다. 수치해석모형의 개선, 물리적 부분구조 모형 접선강성행렬의 유한요소해석 프로그램에서의 평가 그리고 하중기반 보-요소의 요소상태결정의 연산시간을 줄이기 위한 소프트웨어의 개선이 이루어진다면 실시간 하이브리드실험과 진동대실험결과의 비교는 권장할 만하다. 그리고 "지진과 같은 동적하중하의 복잡한 구조물의 수치해석시뮬레이션"이라는 목적을 위하여 실시간 하이브리드실험은 동적하중에 대한 실험적 검증을 점진적으로 수치해석모형으로 대체하기 위한 저비용-고효율 실험법으로서의 가치를 충분히 가지고 있다고 할 수 있다.