검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pressure sensor had been widely used to effectively monitor the flow status of the water distribution system for ensuring the reliable water supply to urban residents for providing the prompt response to potential issues such as burst and leakage. This study aims to present a method for evaluating the performance of pressure sensors in an existing water distribution system using transient data from a field pipeline system. The water distribution system in Y District, D Metropolitan City, was selected for this research. The pressure data was collected using low-accuracy pressure sensors, capturing two types of data: daily data with 1Hz and high-frequency recording data (200 Hz) according to specific transient events. The analysis of these data was grounded in the information theory, introducing entropy as a measure of the information content within the signal. This method makes it possible to evaluate the performance of pressure sensors, including identifying the most sensitive point from daily data and determining the possible errors in data collected from designated pressure sensors.
        4,200원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We propose a transient evaluation scheme using a pressure measurement in a complicate pipeline systems. Conservation of mass and momentum equations in time domain can be transformed into a pressure head and flowrate relationship between upstream and downstream point in frequency domain. The impedance formulations were derived to address measured pressure at downstream to evaluate of flowrate or pressure head at any point of system. Both branched pipeline element and looped pipeline element can be generally addressed in the platform of the basic reservoir pipeline valve system. The convolution of time domain response function with measured pressure head from a downstream point provides flowrate or pressure head response in any point of the designated pipeline system. The proposed method was validated through comparison between traditional method of characteristics and the proposed method in several hypothetical systems.
        4,000원
        3.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we propose a flow velocity evaluation scheme based on pressure measurement in pressurized pipeline systems. Conservation of mass and momentum equations can be decomposed into mean and perturbation of pressure head and flowrate, which provide the pressure head and flowrate relationship between upstream and donwstream point in pressurized pipeline system. The inverse impedance formulations were derived to address measured pressure at downstream to evaluation of flow velocity or pressure at any point of system. The convolution of response function to pressure head in downstream valve provides the flow velocity response in any point of the simple pipeline system. Simulation comparison between traditional method of characteristics and the proposed method provide good agreements between two distinct approaches.
        4,000원
        4.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a method of leakage detection was proposed to locate leak position for a reservoir pipeline valve system using wavelet coherence analysis for an injected pressure wave. An unsteady flow analyzer handled nonlinear valve maneuver and corresponding experimental result were compared. Time series of pressure head were analyzed through wavelet coherence analysis both for no leak and leak conditions. The leak information can be obtained through either time domain reflectometry or the difference in wavelet coherence level, which provide predictions in terms of leak location. The reconstructed pressure signal facilitates the identification of leak presence comparing with existing wavelet coherence analysis.
        4,200원
        5.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper suggests a nonlinear pressure consideration scheme through an unsteady pipe network analyzer for leakage detection with a portable pressure wave generator. In order to evaluate the performance of a proposal scheme, linear input pattern has been simulated and experiments had been carried out under both no leakage and one leakage conditions in a reservoir-pipeline-valve system. This method using portable pressure wave generator showed that a leakage can be detected from a reflection where a leakage is originated through time domain analysis. Meaningful similarity in pressure response between nonlinear input pattern and experimental results were found both no leakage and a leakage conditions.
        4,000원