The crystal structures and morphologies of precipitates in L10-ordered TiAl intermetallics containing nitrogen were investigated by transmission electron microscopy (TEM). Under aging at an approximate temperature of 1073 K after quenching from 1423 K, TiAl hardens appreciably due to the nitride precipitation. TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the L10-TiAl matrix, appear in the matrix preferentially at the dislocations. Selected area electron diffraction (SAED) pattern analyses showed that the needle-shaped precipitate is perovskite-type Ti3AlN (P-phase). The orientation relationship between the P-phase and the L10-TiAl matrix was found to be (001)p//(001)TiAl and [010]p//[010]TiAl. By aging at higher temperatures or for longer periods at 1073 K, plate-like precipitates of Ti2AlN (H-phase) with a hexagonal structure formed on the 111 planes of the L10-TiAl matrix. The orientation relationship between the Ti2AlN and the L10-TiAl matrix is (0001)H//(111)TiAl and H//TiAl.
The aim of this study is investigated greenhouse gas emissions of glass industry, and when calculates greenhouse gas emission, using formula(Tier 3) advising in IPCC(Intergovernmental Panel on Climate Change) and using self designed formula(Tier 3+) authors of this study. Studied to propose calculation formula that can compare these two calculation results and apply to domestic. Formula of Tier 3 calculated to theoretical composition of carbonate material, And Formula of Tier 3+ calculated on the basis of chemical substance formation table that get from glass manufacture company(The S company). As a result, Dolomite, Soda ash, Limestone, Industrial Barium carbonate is calculated value of Tier 3+ lower than value of Tier 3, And Industrial Potassium carbonate, Industrial Strontium carbonate was calculated value of Tier 3 lower than value of Tier 3. This study finding, formula of Tier 3+ has higher confidence than formula of Tier 3 when consider revision about purity of injection raw material. And hereafter, When calculate greenhouse gas emissions about nonmetallic mineral industry, use of Tier 3+ is considered that should be encouraged.