검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        The development of recycling technology and process of waste electrical and electronic equipment (WEEE), also called electronic waste is becoming a growing interest in the world from the perspective of material recovery and resource conservation. In this study we examined the recycling technology levels of WEEE by both group category and recycling process using expert surveys. Based on the results of the expert surveys conducted, the level of large home appliances was found to be approximately 81.1% (± 6.2% std) when compared with that of the advanced countries, while small home appliances and IT equipment and audio/video equipment were 73.5% (± 6.2% std) and 76.2% (± 6.2% std), respectively. In case of recycling pre-treatment process (e.g., disassembly, size reduction, and separation), the technological levels was found to be approximately 82.2%, while the material recovery process followed by the pretreatment process was estimated to be approximately 68.5%. The results of reliability test for the expert survey showed that the values of coefficient of variation (CV) for the pre-treatment process and material recovery process by group category and recycling process are less than 0.5, which is a guidance limit for the coefficient. Based on the statistical tests (ANOVA and t-test), there is no significant difference of the recycling technological levels among the group category (large home appliances, small home appliances, IT equipment, and audio/video equipment. However, the statistical difference between the pre-treatment process and material recovery process within the group category existed (p-value < 0.05) using t-test. In this study, the results imply that there is still a need for developing a variety of more advanced recycling technologies of WEEE to effectively recover valuable metals and materials from it, especially in the fields of metal recovery and extraction processes.
        2.
        2013.01 KCI 등재 서비스 종료(열람 제한)
        Consumers increasingly prefer HDTV (high definition television), including LCD (liquid crystal display), LED (light emitting diode), and plasma TVs (television), and existing analog TV broadcasting system will be switched to digital broadcasting at the end of 2012 in Korea. Even for computer monitors, CRT (cathode-ray tube) monitors are no longer preferred because of customers’ increasing desire for thinner and lighter monitors and mobile computers. It is anticipated that these shifts will lead to a dramatic increase in disposal of analog TV sets. In 2012, it is estimated that about 117 thousand tons of CRT glass waste will be generated in Korea. CRT glass waste is not only Korea’s problem but also global issue, which needs worldwide attentions and policies for conserving useful resources and preventing groundwater pollution from heavy metals contained in CRT glass waste in case of landfill. It is important to develop BATs (best available technologies) to recycle CRT glass waste properly in short times. Therefore, in this study recycling possibility of CRT class was evaluated for the clay brick including powder of CRT glass of after crushing. Compressible strength and absorption factor of fabricated sample clay bricks were measured and observed whether they could satisfy the Korean Industrial Standard to use as normal bricks or not. The clay bricks containing under 5% of CRT panel glass powders were found to show enough quality as bricks, therefore the recycling of CRT cullet as materials of clay bricks could be utilized as one of the options.