검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2025.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we propose a data-driven analytical framework for systematically analyzing the driving patterns of autonomous buses and quantitatively identifying risky driving behaviors at the road-segment level using operational data from real roads. The analysis was based on Basic Safety Message (BSM) data collected over 125 days from two Panta-G autonomous buses operating in the Pangyo Autonomous Driving Testbed. Key driving indicators included speed, acceleration, yaw rate, and elevation, which were mapped onto high-definition (HD) road maps. A hybrid clustering method combining self-organizing map (SOM) and k-means++ was applied, which resulted in eight distinct driving pattern clusters. Among these, four clusters exhibited characteristics associated with risky driving such as sudden acceleration, deceleration, and abrupt steering, and were spatially visualized using digital maps. These visualizations offer practical insights for real-time monitoring and localized risk assessment in autonomous vehicle operations. The proposed framework provides empirical evidence for evaluating the operational safety and reliability of autonomous buses based on repeated behavioral patterns. Its adaptability to diverse urban environments highlights its utility for intelligent traffic control systems and future mobility policy planning.
        4,600원
        2.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Autonomous vehicle (AV) technology is rapidly entering the commercialization phase driven by advancements in artificial intelligence, sensor fusion, and communication-based vehicle control systems. Real-world road testing and pilot deployments are increasingly being conducted, both domestically and internationally. However, ensuring the safe operation of AVs on public roads requires not only technological advancement of the vehicle itself but also a thorough pre-evaluation of the road environments in which AVs are expected to operate. However, most previous studies have focused primarily on improving internal algorithms or sensor performance, with relatively limited efforts to quantitatively assess how the structural and physical characteristics of road environments affect AV driving safety. To address this gap, this study quantitatively evaluated the compatibility of road environments for AV operation and defined the road conditions under which AVs can drive safely. Three evaluation scenarios were designed by combining static factors such as curve radius and longitudinal gradient with dynamic factors such as level of service (LOS). Using the MORAI SIM autonomous driving simulator, we modeled the driving behaviors of autonomous vehicles and buses in a virtual environment. For each scenario, the minimum time to collision (mTTC) from the moment the AV sensors detected a lead vehicle was calculated to assess risk levels across different road conditions.The analysis revealed that sharper curves and lower service levels resulted in significantly increased risk. Autonomous buses exhibited a higher risk on downhill segments, autonomous vehicles were more vulnerable to uphill slopes and gradient transitions. The findings of this study can be applied to establish road design standards, develop pre-assessment systems for AV road compatibility, and improve AV route planning and navigation systems, thereby providing valuable implications for policy and infrastructure development.
        4,300원