검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        TiO2-particles containing Co grains are fabricated via thermal hydrogenation and selective oxidation of Ti- Co alloy. For comparison, TiO2-Co composite powders are prepared by two kinds of methods which were the mechanical carbonization and oxidation process, and the conventional mixing process. The microstructural characteristics of the prepared composites are analyzed by X-ray diffraction, field-emission scattering electron microscopy, and transmission electron microscopy. In addition, the composite powders are sintered at 800℃ by spark plasma sintering. The flexural strength and fracture toughness of the sintered samples prepared by thermal hydrogenation and mechanical carbonization are found to be higher than those of the samples prepared by the conventional mixing process. Moreover, the microstructures of sintered samples prepared by thermal hydrogenation and mechanical carbonization processes are found to be similar. The difference in the mechanical properties of sintered samples prepared by thermal hydrogenation and mechanical carbonization processes is attributed to the different sizes of metallic Co particles in the samples.
        4,000원
        2.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study examined the effect of current density on the surface morphology and physical properties of copper plated on a polyimide (PI) film. The morphology, crystal structure, and electric characteristics of the electrodeposited copper foil were examined by scanning electron microscopy, X-ray diffraction, and a four-point probe, respectively. The surface roughness, crystal growth orientation and resistivity was controlled using current density. Large particles were observed on the surface of the copper layer electroplated onto a current density of 25 mA/cm2. However, a uniform surface and lower resistivity were obtained with a current density of 10 mA/cm2. One of the important properties of FCCL is the flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density rather than a high current density. Moreover, a reasonable current density is 20 mA/cm2 considering the productivity and mechanical properties of copper foil.
        3,000원