Many studies are conducted in several fields for fragility analysis of structures or elements which is a probabilistic seismic safety analysis in consideration with uncertainty of seismic loading. It is hard to directly conduct fragility analysis for an infrastructure with social importance due to its size. Therefore, a fragility analysis for an infrastructure mainly conducted in element level or conducted with scaled model built in accordance with similarity law. In this article, fragility analysis for prototype and scaled model of reinforced concrete column was conducted with numerical models which had been updated by the results of shaking table test and pseudo dynamic test. As a result, response stress from the numerical analysis result of prototype model was higher than that from scaled model due to different stiffness ratios between steel and concrete. However, the probability of failure for scaled model was higher than that for prototype model because failure criteria for scaled model was down due to similarity law. Also it was evaluated that probability of failure by using log normal standard deviation of response stresses by spectrum matched accelerograms was more reliable than probability of failure by using existing coefficient of variation normally used.
Interest in seismic performance evaluation is increased due to various earthquake in the world. Many studies about fragility analysis of structure are performing which is based on probability analysis of failure for infrastructures maintenance. In this study, probability of failure for a numerical model of prototype square-shape reinforced concrete column was calculated in accordance with amplitude of seismic ground motion. The numerical model was updated based on results from shake table tests. The probability of failure will be used for comparing with that for scaled models. The difference of fragilities from prototype and scaled model can be confirmed by the comparing in a further study.