Ti-6Al-4V alloy is widely utilized in aerospace and medical sectors due to its high specific strength, corrosion resistance, and biocompatibility. However, its low machinability makes it difficult to manufacture complex-shaped products. Advancements in additive manufacturing have focused on producing high-performance, complex components using the laser powder bed fusion (LPBF) process, which is a specialized technique for customized geometries. The LPBF process exposes materials to extreme thermal conditions and rapid cooling rates, leading to residual stresses within the parts. These stresses are intensified by variations in the thermal history across regions of the component. These variations result in differences in microstructure and mechanical properties, causing distortion. Although support structure design has been researched to minimize residual stress, few studies have conducted quantitative analyses of stress variations due to different support designs. This study investigated changes in the residual stress and mechanical properties of Ti-6Al-4V alloy fabricated using LPBF, focusing on support structure design.
우리나라와 전 세계의 여러 지역에서 수집한 비늘버섯속 18 균주와 개암비늘버섯 2 균주를 대상으로rDNA의 ITS region 염기서열과 genomic DNA의RAPD-PCR을 수행하였다. ITS1과 ITS2영역의 염기의수는 각각 233~271, 158~233 그리고 174~219 염기쌍으로 종에 따라 변이가 있었는데 ITS2영역의 염기서열이 ITS1의 영역보다 변이가 높았고 5.8S지역의 염기의 수는 비교적 변이가 적었다. 각각의 균주 간 유연관계를 알아보기 위해 ITS영역의 염기서열을 이용하여계통도를 작성한 결과 실험에 사용한 균주는 8개의 클러스터로 나누어지는 것으로 나타났으며 동일한 종의버섯은 동일한 클러스터에 속하는 것으로 나타났다.또한 20종류의 primer를 이용하여 비늘버섯속 버섯을대상으로 RAPD-PCR을 수행한 결과 15개의 primer가효과적으로 염색체 DNA를 증폭하는 것으로 나타났다.증폭의 양상은 primer의 종류와 종에 따라 변이가 있었다. 이 결과를 토대로 계통수를 작성한 결과 계통수는 ITS 영역의 PCR 결과와 매우 유사하였다. 본 실험결과, 실험에 사용한 비늘버섯속 버섯의 종과 계통 간의 유연관계는 높았으며, rDNA ITS 영역의 염기서열분석 결과를 이용해 공시된 각각의 비늘버섯 종을 분류하는데 유용하게 사용이 가능하였다.