In this study, Rebar of SD500, SD600 is applied to the designed or constructed in domestic apartment. Analyzed the variation of the rebar according to the strength of the rebar and the construction cost of the change. Reinforced volume reduction of the apartment building is less than the other. Because, A low wall of rebar reduction is more than 50% of the total. The reason for the previous, Reduction of the quantity of horizontal reinforcement does not appear and Vertical rebar reinforcement than the stress is determined by the placement of rebar in which the upper floor.
Shear test on hollow-core slabs that using board-type lightweight materials is performed. Lightweight materials are positioned in the slabs, it separate into two parts vertically. It is possible that each parts act independently and the concrete columns, in the middle of slab, can resist this action. Thus we have to check horizontal shear force on part-column connection besides vertical shear force. Also effective cross-sectional area shear force which is considered by existing study is checked.
In this technology, To improves the performance of deflection of the slab reduces floor impact noise in downstairs without structural work in vulnerable to floor impact noise in Aged Apartment Houses. The finite element analysis results showed the performance improvement of slab when compared with the existing technologies and Predict the result of the excellent affordability and constructability.
In this study, Rebar of SD500, SD600 is applied to the designed or constructed in domestic underground parking. Analyzed the variation of the rebar according to the strength of the rebar and the construction cost of the change. Most of underground parking appear reduction of Rebar ratio. In this case, the load acting on the underground parking garage is large. So, Rebar placing is dominated by element's stress. Therefore, Large amounts material of slabs, beams and foundations are reduced. In case of columns and wall, Ratio of Material reduction is less than former. Because Splice and Anchorage of rebar amounts are increased and Hoop and horizontal rebar amounts are fixed. Percentage of rebar of the column and wall are 15%. So, Showed a less impact on the reduction of total material.
Recently, a market of architecture is requiring buildings of long spanned structures as most buildings become taller and larger. For being long spanned structures, elements of buildings must be light. As an alternative proposal, various hollow-core slabs and flat plate salbs were developed and used frequently in the inside and outside of the country. But the study of the hollow-core slabs using deck plate and assembly of light weight is the first. In the present study, Flexural and vibration tests were performed on the hollow-core slabs using deck plate and assembly of light weight to investigate the flexural behavior and serviceability. Four test specimens were used for test parameters; one hollow-core slab with an assembly of light weight, and three hollow-core slabs with deck plate and an assembly of light weight. The test parameters also included amount of tension bar and existence of shear reinforcement. The test results showed that the hollow-core slabs with deck plate and an assembly of light weight had a crack of shear, so shear reinforcement must be conducted.
In recently, the method estimated construction's defeat using the infrared thermography was prefer to method of new repair and estimate as a good point that simple of application and save labor, what is more economic than other techniques and can reduce need time. The purpose of this study is to develope the technique to measure the corrosion of reinforcing bars using the infrared thermal photography graphic data. In this page, the former final purpose establishment that galvanic corrosion method of reinforced bars and infrared thermography system, and studied trend of thermography and photography graphic data by parameters of corrosion of specimens, atmosphere temperature, concrete cover depth etc.
The structure which was designed until then had no resistance to earthquake, since enforcement ordinance for seismic design was established in 1988. Most of mid or low story building have no resistance to earthquake, though it is the structure which was designed since then. Prior to this experiment, the experiment, which was repair and retrofit method for seismic performance progress of the reinforcement structure which was not designed to be protected from an earthquake, had been performed and obtained good results. The aim of study is that repair the structure and evaluate seismic performance of the repaired structure in the case of the structure damaged by earthquake.
In the current study, retarding type and standard type admixture design of concrete have been proposed to control the generation of hydration heat for foundation members that use high strengths concrete. Finite element analysis also has been conducted to understand the rational placing heights of concrete. In addition, real-size structures have experimented and their results were compared to the analytical results to evaluate the reducing effect of thermal stress . For a large 6.5 m×6.5 m×3.5 m member with retarding and standard type horizontal partition placement of concrete showed the manageable possibility of temperature difference within 25-degree Celcius between the middle and surface portion while the maximum temperature was 77-degree Celcius. Also, temperature cracking index from the finite element analysis appeared to be 1.49 that predicts no formation of cracking due to the effects of temperature. Finally, it appeared that horizontal partition placement of retarding and standard type concrete has the significant effect of reducing the thermal stress that generated by the hydration heat in the high strengths mass concrete.