BaTiO3-coated Fe nanofibers are synthesized via a three-step process. α-Fe2O3 nanofibers with an average diameter of approximately 200 nm are first prepared using an electrospinning process followed by a calcination step. The BaTiO3 coating layer on the nanofiber is formed by a sol-gel process, and a thermal reduction process is then applied to the core-shell nanofiber to selectively reduce the α-Fe2O3 to Fe. The thickness of the BaTiO3 shell is controlled by varying the reaction time. To evaluate the electromagnetic (EM) wave-absorbing abilities of the BaTiO3@Fe nanofiber, epoxy-based composites containing the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss increases to the high frequency region without any degradation. Our results demonstrate that the BaTiO3@Fe nanofibers obtained in this work are attractive candidates for electromagnetic wave absorption applications.
다중 만곡부에서의 주흐름과 이차류의 흐름 특성을 분석하기 위하여 중심각 120인 두 개의 만곡부로 이루어진 사행수로에서 실험을 수행하였다. 실험수로의 횡단면은 직사각형과 곡선형 두 가지 형태로 제작하였으며, 곡선형 단면 형상 결정에는 베타함수를 이용하였다. 3차원 유속장의 측정은 micro-ADV를 이용하였다. 실험결과, 직사각형 수로에서 주흐름은 수로의 가장 짧은 경로를 따라 발생하였으며, 이는 기존 연구자들의 결과와 일치한다. 곡선형 수로에서도 주흐
캐나다 퀘벡주 파커광산(Parker mine)에서 산출된 삼팔면체 운모인 금운모-1M 시료에 대하여 중성자분말회절 분석을 실시하고 리트벨트법을 통해 그 결정구조를 해석하였으며, 특히 X선 분말회절법으로는 해석이 어려운 금운모 구조 내의 OH기의 크기 및 길이, 그리고 방향성을 결정하였다. 연구에 이용된 금운모의 화학조성은 EPMA 분석결과 K2(M g4.46F e0.83A l0.34 Ti0.22)(S i5.51A l2.49) O20(O H3.59 F0.41)로 나타났다. 중성자 분말회절실험은 상온과 극저온(-263℃)에서 실시하였으며, 회절값으로부터 구한 금운모의 단위포 상수는 a=5.30∼5.31 a, b=9.18∼9.20 a, c=10.18∼10.21 a, β=100.06∼100.08˚로 결정되었다. R지수의 경우 극저온(-263℃)에서의 값이 Rp=2.35%, Rwp=3.01%로, 상온에서의 값( Rp=2.51%, Rwp=3.18%)보다 다소 적게 나타났는데, 이는 낮은 온도에서 온도인자 (Biso)에 대한 영향이 적어짐에 따라 나타나는 결과로 생각된다. OH기의 결합거리는 상온에서 0.93 a, 저온에서 1.03 a, 방향성은 93.4˚∼93.6˚로 측정되었다 극저온에서 상온으로 온도가 상승하면서 OH기의 크기가 감소하는 것은 온도 상승에 따른 진동효과보다는 결정구조내의 수소결합과 관련있는 것으로 해석된다.석된다.석된다.으로 해석된다.석된다.석된다.
한국원자력연구소의 연구용 원자로인 하나로에 설치되어 있는 4축 단결정 회절장치에서 사용할 수 있는 고온시료환경장치의 개발이 완료되었다. 이 장치를 이용하여 구조가 알려진 시료에 대해 고온실험을 수행함으로써 장치의 성능을 시험하였다. 이번 연구를 통하여 현재 개발된 고온시료환경장치가 900 K 이상의 고온에서 장시간의 실험에 안정함을 알 수 있었다. LaTaO3단결정(상전이 온도 약 900 K)에 대해 상온과 913 K에서 중성자 회절실험을 수행하여 X-ray 회절실험으로는 정확한 위치를 측정하기 어려운 Li의 위치를 측정하였고 고온에서 Li 원자가 무질서 상태로 존재함을 확인하였다.