본 연구는 VOC 배출원 중 도장, 인쇄 공정에서 주요 발생물질인 톨루엔을 저온 분해할 수 있는 귀금속 팔라듐촉매 개발에 목적을 두고 있다. 팔라듐은 톨루엔 제거에서 활성이 우수하지만 비용이 높다. 따라서 실용성의 방안으로 Pd 담지량의 최소화 비율(0.1~1.0wt%)로 제조한 촉매의 활성을 측정하였다. 그 결과 1.0wt% Pd(R) 촉매가 모든 조건에서 가장 높은 활성을 나타내었다. 이는 SEM 촬영과 XRD 분석을 통해 촉매 제조과정에서 Pd의 담지량 및 소성 분위기에 따른 분산 형태와 연관이 있는 것으로 사료된다.
본 논문은 다양한 시설내에 적은 농도의 CO2 제거를 위한 선택적 CO2 흡수능력을 향상시킨 흡착제의 효율평가에 관한 것이다. 직경 4mm의 구형 흡착제는 시판용 제올라이트에 첨가제, 물, 바인더, LiOH를 섞어 제조하였다. 칼럼테스트에서 400분 이내에 90% 이상의 CO2흡착효율을 나타내었고, 흡착필터모듈 흡착능력을 평가하기 위해 회분식과 연속식타입의 챔버테스트가 시행되었다. 회분식테스트에서 30분 이내에 약 92%의 CO2가 제거되는 것을 확인하였다. 연속식테스트에서 30분 이내 70%의 CO2가 제거효율을 보였으며, 2,500ppm 이상의 CO2가 제거되는 것을 확인하였다. 재현성테스트를 수차례 수행한 결과 15일동안 1,000ppm 이상의 CO2가 연속적으로 제거됨을 보였다. TGA 분석법을 이용한 흡착량 분석에서 흡착제 g당 5.0mmol의 CO2를 흡착하는 것으로 나타났다. 본 연구에서 개발된 흡착제는 상온에서 저농도 CO2 실내환경에 적용가능한 것으로 판단된다.
Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. 0.57 W/㎡ Al/Graphite. Meanwhile, graphite-only electrodes produced max. 0.11 W/㎡ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was 0.64 W/㎡. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5∼36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.