검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Morphology of cumulus-oocyte-complexes (COCs) at germinal vesicle (GV) stage as one of the evaluation criteria for oocyte maturation quality after in vitro maturation (IVM) plays important roles on the meiotic maturation, fertilization and early embryonic development in pigs. When cumulus cells of COCs are insufficient, which is induced the low oocyte maturation rate by the increasing of reactive oxygen species (ROS) in porcine oocyte during IVM. The ROS are known to generate including superoxide and hydrogen peroxide from electron transport system of mitochondria during oocyte maturation in pigs. To regulate the ROS production, the cumulus cells is secreted the various antioxidant enzymes during IVM of porcine oocyte. Our previous study showed that Mito-TEMPO, superoxide specific scavenger, improves the embryonic developmental competence and blastocyst formation rate by regulating of mitochondria functions in pigs. However, the effects of Mito-TEMPO as a superoxide scavenger to help the anti-oxidant functions from cumulus cells of COCs on meiotic maturation during porcine oocyte IVM has not been reported. Here, we categorized experimental groups into two groups (Grade 1: G1; high cumulus cells and Grade 2: G2; low cumulus cells) by using hemocytometer. The meiotic maturation rate from G2 was significantly (p < 0.05) decreased (G1: 79.9 ± 3.8% vs G2: 57.5 ± 4.6%) compared to G1. To investigate the production of mitochondria derived superoxide, we used the mitochondrial superoxide dye, Mito-SOX. Red fluorescence of Mito-SOX detected superoxide was significantly (p < 0.05) increased in COCs of G2 compared with G1. And, we examined expression levels of genes associated with mitochondrial antioxidant such as SOD1, SOD2 and PRDX3 using a RT-PCR in porcine COCs at 44 h of IVM. The mRNA levels of three antioxidant enzymes expression in COCs from G2 were significantly (p < 0.05) lower than COCs of G1. In addition, we investigated the anti-oxidative effects of Mito-TEMPO on meiotic maturation of porcine oocyte from G1 and G2. Meiotic maturation and mRNA levels of antioxidant enzymes were significantly (p < 0.05) recovered in G2 by Mito-TEMPO (0.1 μM, MT) treatment (G2: 68.4 ± 3.2% vs G2 + MT: 73.9 ± 1.4%). Therefore, our results suggest that reduction of mitochondria derived superoxide by Mito-TEMPO may improves the meiotic maturation in IVM of porcine oocyte.
        4,000원
        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to produce high-quality blastocysts and establish appropriate microinjection conditions for the introduction of target gene. First, we identified embryo development to the blastocyst stage after microinjection using the CRISPR/Cas9 system on the Cas9 protein or mRNA. As a result, we confirmed that blastocyst development in the Cas9 mRNA injected group significantly increased when compared to the Cas9 protein injected group (p<0.05). However, the blastocyst gene targeting rate increased in the Cas9 protein injected group when compared to the Cas9 mRNA injected group (p<0.05). Next, we treated the injection medium with 10 μg/ml of cytochalasin B (CB), and the microinjected embryos were cultured in CR1-aa medium supplemented with 0.1 μM of melatonin (Mela). Consequently, the blastocyst formation rate significantly increased in the CB treated group (p<0.05). After microinjecting embryos with the CB treated injection medium, we investigated blastocyst formation and quality via Mela treatment. Consequently, the Mela treated group demonstrated significantly increased blastocyst formation rates when compared to the non-treated group (p<0.05). Furthermore, immunofluorescence assay using RAD51 (DNA repair detection protein) and H2AX139ph (DNA damage detection protein) showed an increase in RAD51 positive cells in Mela treated embryos. Therefore, we verified the improvement in knock-in efficiency in microinjected bovine embryos using Cas9 protein. These results also demonstrated that the positive effect of the CB and Mela treatments improved the embryonic developmental competence and blastocyst qualities in genetically-edited bovine embryos.
        4,200원