The Indoor Air Quality Control Act aims to regulate indoor air quality (IAQ) to safeguard public health and promote a comfortable living environment. This law encompasses multi-use facilities, newly constructed residential complexes, and public transportation vehicles. The law also involves mandating air quality standards, conducting periodic measurements, and transparent public reporting of results. Over time, the Indoor Air Quality Control Act has expanded to enforce stricter controls on building materials and enhance radon mitigation measures. In doing so, it embodies the principles of the Environmental Policy Basic Act and is supported by other laws, policies, and systems related to air quality management. In line with these efforts, local governments have been implementing IAQ initiatives tailored to regional needs, including consulting services and financial support. However, challenges persist in harmonizing management across diverse facilities due to overlapping responsibilities among laws and government bodies. Future recommendations emphasize integrated strategies and enhanced inter-agency coordination to address these gaps effectively, ensuring healthier indoor environments for all stakeholders.
국제해사기구(IMO)의 규제강화로 인한 선박탄소집약도지수(CII)를 충족시키기 위하여 최근 친환경 기술인 로터세일(Rotor sail) 기술도입이 부각되고 있다. 1924년 첫 로터세일 장착선박이 개발된 이래로 다양한 연구개발이 진행되어져 왔고 이미 해외기업에 의 해 상용화 되어져 있다. 이러한 기존 원통형 로터(Rotor)는 로터의 속도비(Spin ratio) 증가 시 일정구간 이후부터 공기역학적 효율(CL/CD) 이 감소하는 현상이 발생된다. 이 점을 해결하기 위하여 2019년 한 차례 선행 연구된 새로운 원뿔형 로터를 이해하고 조건을 재설정하 여 최적의 공기역학적 효율 조건을 연구하였다. 원통형 로터와 원뿔형 로터에 속도비와 로터상부지름(Rotor top diameter, d) 대 끝단플레 이트지름 (End plate diameter, De) 비로 변수를 적용한 12가지 조건을 연구하였다. 그 결과 원뿔형 로터에서만 로터의 속도비 증가에 따 른 공기역학적 효율은 일정하거나 약간 증가하는 현상이 나타났으며 끝단플레이트의 지름 비율이 4배인 특정 조건에서 명확히 확인 할 수 있었다.
Suspended solids play an important role in the growth and survival of aquatic organisms. The marine zooplankton species tested in this study were Tigriopus west (Copepoda) and Haustorioides koreanus (Amphipoda) sampled from the intertidal zone, including Artemia nauplii (Branchiopoda) hatched from cysts. The study design included six concentrations (0, 50, 100, 250, 500, and 1,000 mg L-1) of the suspended test particles assayed in triplicate. Experimental cultures in 500 mL-round polycarbonate bottles were subsampled after 96 h to count dead zooplankton. The culture bottles were agitated at 4 RPM on a rotating wheel at 23°C and 30 PSU. The survival rates of Artemia nauplii and T. west were not affected by suspended solid concentrations higher than 50.0 mg L-1, whereas the survival rate of H. koreanus decreased with increasing concentrations (p<0.05). In conclusion, H. koreanus and T. west, which were continuously exposed to suspended solid concentrations higher than 50.0 mg L-1, were affected by low-intensity ecological stress. However, in the case of H. koreanus, a concentration of 50.0 mg L-1 may be considered to be the limit of tolerance to suspended solids, suggesting that the number of individuals who eventually die will increase if continuously exposed.
To investigate the tolerance limit and critical thermal maximum (CTM), behavioral responses of wild goldeye rockfish Sebastes thompsoni according to exposure to high water temperature were observed using a continuous behavior tracking system. As a result, behavioral index (BI) of S. thompsoni in each temperature (20.0, 25.0, and 30.0°C) showed a significant difference (p<0.05) when compared with the value measured in a stable condition of 15.0°C. The activity level of S. thompsoni exposed to 25.0°C decreased sharply after 20 hours. Their rest time at the bottom of experiment chamber increased, and their normal swimming and metabolic activities were disturbed. In addition, at a high water temperature of 30.0°C, S. thompsoni reached the limit of resistance and showed a sub-lethal reaction of swimming behavior, with energy consumption in the body increased and all test organisms died. In conclusion, the eco-physiological response of S. thompsoni to water temperature varied greatly depending on the fluctuation range of the exposed temperature and the exposure time. In addition, the tolerance limit of S. thompsoni to high water temperature was predicted to be 25.0- 30.0°C. The maximum critical thermal that had a great influence on the survival of this species was found to be around 30.0°C.
Seoul has installed mechanical air filters in the heating, ventilation, and air conditioning (HVAC) systems of city buses to improve their indoor air quality since late 2019. We evaluated particle removal efficiencies of the filter in a wind tunnel, and clean air delivery rates (CADRs) of the systems and a household air purifier in the buses, following the test standards. The filter showed the efficiencies of 91% and 97.6%, 88% and 97.9%, and 78% and 95.2% for 0.35 μm particles and PM2.5 at 1.0m/s, 1.5m/s, and 2.0m/s, respectively. The efficiencies rose with an increase in the particle size and the filters had a minimum efficiency reporting value (MERV) rating of 15. The CADRs for PM2.5 and flow rate of the systems were 12.7m3/min and 17.9m3/min, 16.6m3/min and 25.4m3/min, 18.7m3/min and 33.6m3/min, and 23.3m3/min and 47.1m3/min on the operation mode of 1, 2, 3, and 4, respectively. The CADRs of the systems were 3.8-7.1 times higher than those of the air purifier, but single-pass removal efficiencies of the former were 0.56-0.81 lower than those of the latter.
In this study, using a continuous behavior measurement technique, the short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings to sudden exposure to low salinity in a controlled environment were observed. The activity of the fingerlings suddenly exposed to 21.4, 17.3, and 9.8 psu increased temporarily at the initial exposure to show irregular swimming behavior, but then recovered a stable activity pattern through rapid salinity adaptation. However, the organisms suddenly exposed to 7.3 and 4.3 psu could not withstand the salinity stress, and their swimming behavior was severely disturbed and all individuals died within 48 hours. The findings suggest that red seabream underwent a temporary salinity stress process at the beginning of the exposure to concentrations of 10.0 psu or higher. At these concentrations, osmotic control was possible within at least 11 hours, so stable metabolic activity was also possible. However, organisms suddenly exposed to concentrations below 5.0 psu exceeded the tolerance to low salinity and the sublethal limit. In red seabream exposed to this concentration range, severe behavioral and metabolic disturbances were observed, and death was observed due to osmotic control failure. In conclusion, a salinity range of 5.0 to 10.0 psu can be predicted to correspond to a concentration range in which the osmotic control ability of the red seabream fingerlings is lost, and sub-lethal reactions occur.
어류 치어기의 주요 먹이로 생물로 사용되는 해산 로티퍼 (Brachionus plicatilis)의 생존율 및 개체군 성장률을 이용하여, 국내 연안에 잔류하고 있는 것으로 알려진 신방 오물질인 chlorothalonil의 독성을 평가하고자 하였다. B. plicatilis의 생존율은 0.039 mg L-1에서 유의하게 감소하기 시작하여, chlorothalonil의 농도가 증가할수록 감소하는 농도의존성을 나타냈다. 생존율의 무영향농도는 0.020 mg L-1, 최소영향농도는 0.039 mg L-1, 반수영향농도는 0.057 mg L-1로 나타났다. 개체군 성장률 또한 생존율과 마찬가지로 0.313 mg L-1에서부터 농도의존적으로 감소하는 경향을 나타냈다. 개체군 성장률의 무영향농도는 0.156 mg L-1, 최소영향농도는 0.313 mg L-1, 반수영향농도는 0.506 mg L-1 로 나타났다. 본 연구 결과, 해양 생태계 내에서 신방오물질인 chlorothalonil의 잔류 농도가 0.039 mg L-1 이상일 경우 B. plicatilis에게 독성영향을 줄 것으로 예상되며, 본 연구의 생태독성 시험결과를 바탕으로 해양환경 내 chlorothalonil 의 독성을 평가하기 위한 기초연구자료 및 다른 방오물질과의 독성영향을 비교평가할 수 있는 자료로 활용될 수 있을 것이다.