자동차 경량화를 지향하는 초경량차체 기술 중에서 합체박판기술을 이용한 수 있는 일련의 최적설계 기법을 제안하고 기존의 자동차 도어 내판에 적용하여 경량화를 수행하였다. 먼저, 내판에 부착되는 보강재를 제거한 후 취약해진 강성을 보강하기 위한 파트 선정을 위해 위상 최적설계를 수행하여 대략적인 파트 분포를 결정하였다. 그 다음 상세설계 단계로서 각 파트의 두께는 치수 최적설계를 이용하여 정하고, 형상 최적설계로 최종 용접선을 결정하였다. 이러한 일련의 최적화를 위해 상용 소프트웨어인 GENESIS가 사용되었다.
컨테이너 터미널에서 컨테이너의 양 하역 작업 시 컨테이너 크레인을 정위치에 고정시키고, 돌풍으로 인해 컨테이너 크레인이 레일방향으로 미끄러지는 것을 방지하는 장치가 레일클램프이다. 쐐기형 레일클램프는 초기에는 작은 압착력으로 레일을 압착하다가 풍속이 증가하면 쐐기작용에 의해 압착력이 증가하는 방식을 취함으로서 구조적으로 안정성과 내구성이 높은 장점을 가지고 있다. 본연구에서는 레일클램프의 주요부인 조에 대해 형상최적설계를 수행하였다. 본 논문에서는 솔리드 요소로 유한요소 모델링된 조(jaw)의 경량화 설계를 위하여 강도를 고려하였다. 설계변수로는 조의 측면부의 두께, 조의 중간부의 롤러지지부의 두께, 조의 하단부의 롤러지지부의 두께, 조의 곡면부의 위치로 설정하였다. 본 연구에서는 상용프래그램인 ANSYS WORKBENCH의 최적화 기능을 이용하였다.
LMTT는 항만 자동화를 위한 수평 이송이 가능하도록 설계된 셔틀카와 격자구조의 레일에 부착된 스테이터 모듈(stator module)로 구성된 PMLSM(Permanent Magnetic Linear Synchronous Motor)에 의해 구동된다. 본 연구에서는 순차적 표본방법에 기초하여 구성된 크리깅 근사모델을 이용하여 이동체의 구조최적설계를 수행하였다. 본 논문에서는 셀 요소로 유한요소 모델링된 이동체(mover)의 경량화 설계를 위하여 강도기준을 고려하고, 설계변수로는 가로빔, 세로빔, 휠 빔의 두께로 설정하였다. 순차적 크리깅모델에 의하여 구해진 최적해를 상용프로그램인 GENESIS를 이용하여 구해진 최적해와 비교, 검토하였다.
LMTT는 항만 자동화를 위한 수평 이송이 가능하도록 설계된 셔틀카(shuttle car)하 격자구조의 레일에 부착된 스테이터 모듈(stator module)로 구성된 PMLSM(Permanent Magnetic Linear Synchronous Motor)에 의해 구동된다. 본 논문에서는 강도 및 강성기준을 고려하고 경량화 설계를 위하여 셀 요소로 유한요소 모델링된 이동체(mover)의 구조최적설계를 수행하였다. 설계변수로는 가로빔, 세로빔, 휠 빔의 두께와 가로빔 및 세로빔의 높이를 포함시켰다. 목적함수는 중량, 제한조건 함수는 안전율이 고려된 허용응력과 가로빔의 허용변위로 설정하였다.