검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2011.04 KCI 등재 서비스 종료(열람 제한)
        노년시대를 대비하는 기능성 게임의 교과목을 개발하기 위하여 인문대학과 공과대학의 관련학과 학생들을 대상으로 연구진의 교과 항목들에 대해 중요성과 필요성에 대한 설문을 조사하였다. 양 대학의 학생들의 인지에 대한 공통점과 차이점을 분석하여 이를 토대로 융합 학제간 신 교과목을 개발하였다. 노인용 기능성 게임의 인식을 학생들에게 확산시키고자 본 교과목을 양대학의 교과과정에 포함시켜 시행하였다.
        2.
        2007.11 KCI 등재 서비스 종료(열람 제한)
        Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and NOx compounds from a low concentration, high volume waste gas streams because of its simplicity and cost- effectiveness. This study investigated the optimal mixture fraction of briquet ash, compost, soil and loess for NOx degradation. Extreme vertices design was used to examine the role of four components on NOx degradation. Under our experimental conditions, 74.5% of NOx degradation was observed, using a model mixture(25% briquet ash, 10% compost, 30% soil and 40% loess) containing 100 ppb of NO. It was shown that experimental design analysis could allow selecting optimal conditions in such biodegradation processes in this study.
        3.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        Currently, the application of TiO2 photocatalyst has been focused on purification and treatment of wastewater. However, the use of conventional TiO2 slurry photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we studied that solar light/TiO2 film system was designed and developed in order to examine disinfection characteristics of sewage wastewater treatment. The optimum conditions for disinfection such as solar light intensity, characteristic of sewage wastewater, amounts of TiO2 and comparison of solar ligth/TiO2 systems with UV light/TiO2 system was examined. The results are as follows: (1) photocatalytic disinfection process with solar light in the presence of TiO2 film more effectively killed total coliform (TC) than solar light or TiO2 film absorption only. (2) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with remain resistant material. (3) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with the increase of amounts of TiO2. (4) TC survival ratio decreased linearly with increasing UV light intensity. (5) The disinfection effect of solar light/TiO2 slurry system decreased more than UV light/TiO2 film systems. (6) The disinfection reaction followed first-order kinetics. We suggest that solar light instead of using artificial UV light was conducted to investigate the applicability of alternative energy source in the disinfection of TC and the degradation of organic material.
        4.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        This study make a comparison between the phosphorus removal performance of FNR(Ferrous Nutrient Removal) process and A/O process by the laboratory experiments. For simultaneous removal of phosphorus, iron electrolysis was combined with oxic tank. Iron precipitation reactor on the electrochemical behaviors of phosphorus in the iron bed. The phosphorus removal in FNR process was more than A/O process. Iron salts produced by iron electrolysis might help to remove COD and nitrogen. And the demanded longer SRT is the more removes the removes COD, nitrogen, and phosphorus. Also, FNR process of sludge quantity more reduce than A/O process to input cohesive agents.
        5.
        2006.02 KCI 등재 서비스 종료(열람 제한)
        Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and NOx compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study was performed to evaluate effect of removal of gaseous NOx using a soil and a yellow soil. Over 60% and 48% of NOx from a soil and a yellow soil was removed at the inlet NO concentrations of 423~ 451ppb, respectively. The bio-filter using a soil media was capable of purifying NOx with a different natural processes. Although some of the processes are quite complex, they can broadly be summarized as adsorption into soil pore water, and biochemical transformations by soil bacteria. When the filteration bio-reactor was applied to a soil and a yellow soil, effective NOx removal was obtained for several times and months. These results show that a soil biofilter can be of use as an alternative advanced NOx treatment system.