검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        2.
        2015.11 서비스 종료(열람 제한)
        The concentration of carbon dioxide in atmosphere is gradually increasing as industrial activity is being facilitated. Since most of the industries are getting their energy from fossil fuels such as coal, petroleum and gas, carbon dioxide production is inevitable. However, by applying suitable carbon capture process at the end of the carbon dioxide emission facilities, the amount of carbon dioxide emitted to atmosphere can be significantly reduced. Thus, Carbon Capture and Storage (CCS) technologies have been developed by many nations. In that technology, captured carbon dioxide is stored in deep ocean or the underground holes. However, considering environmental effects and geological distinct characteristics, CCS technologies are thought to be developed finding new way to handle captured carbon dioxide. One of the method is to turn captured carbon dioxide into precipitated calcium carbonate salt by adding calcium ions. Conventionally, calcium carbonate salt formation is achieved by reaction under high pressure and temperature. However, this method requires large amount of energy to maintain reaction condition. Hence, carbon dioxide reduction and utilization technology through carbon fixation or carbonation in aqueous phase is proposed in this research. Using aqueous absorbent, carbon dioxide is captured and precipitated calcium carbonate salt was formed by adding calcium ions. All of the reaction occurred under ambient temperature and pressure (1 atm, 298.15 K). The amount of carbon dioxide reduction as well as yield of precipitated calcium carbonate salt were considered. Also, through instrumental analysis including Scanning Electron Microscope (SEM), X‐Ray Diffraction (XRD) and Thermogravimetric Analysis (TGA), possibility of final product utilization was investigated.