본 연구의 목적은 직물형 스트레인게이지 센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 영향을 연구 하는 것이다. 본 연구에서는 호흡 신호 측정을 위하여 두 가지 종류의 센서를 구현하고 이를 밴드에 부착하여 호흡 신호를 검출하였다. 20대의 건강한 남성 8명을 대상으로 호흡 측정 밴드 2종을 순차적으로 피험자에게 착용하도록 하였다. 피험자가 편안하게 서 있는 상태에서 분당 15회의 호흡을 동기화시켰다. 30초 동안의 호흡 신호를 측정하고 10초간 휴식을 취하도록 한 후 다시 30초 동안의 호흡 신호를 반복 측정하였다. 측정 위치는 흉부와 복부에서 각각 측정하였다. 또한 동작 상태에서의 호흡 측정 성능을 검증하기 위하여 피험자를 80SPM의 속도로 제자리에서 걷게 하고 이 때의 호흡 신호를 동일한 실험 방법으로 측정하였다. 한편 참조 신호를 획득하기 위해 ‘BIOPAC Systems, Inc.’의 SS5LB를 착용하게 한 후 동시에 측정하였다. 센서의 종류, 측정 위치, 동작 상태의 총 8개 조합의 집단 간 측정 성능의 차이를 검증하기 위해서 SPSS 24.0을 사용하여 Kruskal-Wallis test와 Bonferroni 사후검정을 실행하였다. 또한 센서 종류, 측정 위치, 동작 상태에 따라 각각 차이가 있는지를 분석하기 위해 Wilcoxon test를 실시하였다. 분석 결과 동작 상태와 관계없이 CNT기반의 직물센서를 통해 흉부에서 호흡 신호를 측정 했을 때 호흡 신호 검출 성능이 가장 우수한 것으로 나타났다. 본 연구의 결과를 기반으로 향후에는 야외 환경에서 또는 일상 활동 중에도 동작에 방해 없이 다양한 생체신호를 실시간으로 모니터링 할 수 있는 가슴벨트형 웨어러블 플랫폼을 개발하고자 한다.
A high temperature dilatometer attached to a graphite furnace is built and used to study the sintering behaviorof B4C. Pristine and carbon doped B4C compacts are sintered at various soaking temperatures and their shrinkage pro-files are detected simultaneously using the dilatometer. Carbon additions enhance the sinterability of B4C with sinteringto more than 97% of the theoretical density, while pristine B4C compacts could not be sintered above 91% due to par-ticle coarsening. The shrinkage profiles of B4C reveal that the effect of carbon on the sinterability of B4C can be seenmostly below 1950°C. The high temperature dilatometer delivers very useful information which is impossible to obtainwith conventional furnaces.
In the Ti(CN)-Co/Ni cermet, WC is an effective additive for increasing sinterability and mechanical properties such as toughness and hardness. In this work, WC, (WTi)C and (WTi)(CN) were used as the source of WC and their effects were investigated in the respect of microstructural evolution and mechanical properties. Regardless of the kinds of WC sources, the hard phase with dark core and bright rim structure was observed in the Ti(CN)-Co/Ni cermet under the incorporation of relatively small amount of WC. However, hard phases with bright core began to appear and their frequency increased with the increase of all kinds of WC source addition. The ratio of bright core to dark one in the (TiW)(CN)-Co/Ni cermet was greatest under the incorporation of (WTi)C compared at the same equivalent amount of WC. The mechanical properties were improved with the addition of WC irrespective of the kinds of sources, but the addition of (WTi)(CN) was less effective for the increase of fracture toughness.
UV light irradiation is known to give beneficial effects on fresh produce preservation. A container system equipped with UV-LED was fabricated for storing cherry tomatoes under computer-controlled conditions of intermittent on-off cycles (1 hour on/1 hour off). Wavelength (365 and 405 nm) and physical location of the LED (2 and 5 cm above fruit) were studied as variables affecting the respiration, ethylene production and quality preservation of the fruits at 10 and 20℃. 365 nm wavelength gave much higher radiation intensity than 405 nm, and intensity on surface decreased in inverse proportion to square of distance from LED. When compared to non-irradiated control, UV-LED irradiation decreased the respiration by 5-10% at 10℃ while there was no obvious effect at 20℃. Ethylene production was reduced when the fruits were placed at 5 cm distance, while there was no significant difference from control at 2 cm location. The reduction of ethylene production at 5 cm was more pronounced at 20℃. UV-LED irradiation was shown to have delayed increase or lower concentration in carotenoids compared to control treatment. Any negative effect of UV-LED irradiation on ascorbic acid content and firmness was not observed.
Coming with the well-being era, consumer’s demand for safe agricultural products is increasing. It is urgent to develop an environment-friendly pear production system. Accordingly, this study was conducted to develop an environment-friendly pear production system by using several environment-friendly agricultural materials which is known to be effective in agricultural production. In the effects of environment-friendly agricultural materials on the soil chemical characteristics in pear orchard, the content of total carbon, organic matter, Ca and Mg increased a little respectively compared with those of 2008, and 2nd treatment showed the highest EC and Mg content in the soil among treatments. The content of leaf N, P and Ca in 2009 decreased compared with those of 2008, while Mg content showed no difference between 2008 and 2009 years. Average pear weight in 2009 was 31g higher than that of 2008 (682g) and 2nd treatment showed the highest pear weight (738g) among treatments. The average sugar content was higher in 2009 (12.6°Bx) compared with that of 2008 (12.2°Bx) and the plot of 2nd treatment highest sugar content (12.6°Bx) among treatments. There were no difference in hunter value of L among treatments, but hunter value of a showed higher 1.62 in 2009 than that of 2008 (3.73). The highest of gumminess and cohesiveness of fruits were obtained from 1st treatment and adhesiveness and chewiness of fruits were obtained from 3rd and 1st treatment respectively. Firmness of fruit increased a little in 2009 compared with that of 2008, while the highest firmness was obtained from 3rd treatment with 1.63㎏/5㎜∮ among treatments. Phosphate content in the peel of ‘Niitaka’ pear of fruit skin in 2009 (0.97g/㎏) showed 0.06g/㎏ more content than that of 2008 (0.91g/㎏), while the highest content was obtained from 3rd treatment (1.15g/㎏). Potassium content in the peel of ‘Niitaka’ pear in 2009 was 8.20g/㎏, which is 0.06g/㎏ more content than that of 2008 (7.82g/㎏) and the highest content was obtained from 1st treatment (8.34g/㎏) among treatments. The highest nitrogen content in the flesh of ‘Niitaka’ pear was obtained from 3rd treatment (4.32㎎/g), while it was the lowest in control plot (3.10㎎/g). Phosphate content in the flesh of ‘Niitaka’ pear in 2009 (8.20g/㎏) showed 0.06g/㎏ more content than that of 2008 (7.82g/㎏), while the highest content was obtained from 1st treatment (8.34g/㎏). There were no difference of the potassium content in the fruit peel of ‘Niitaka’ pear between years, but 1st treatment showed the highest content (11.81g/㎏) among treatments, while the lowest was obtained from the control plot (10.83g/㎏).