바이오디젤은 세계 화석연료의 흐름을 변화시킬 수 있는 환경 친화적 대체물질로 관심의 대상이 되고 있으며 대체연료 외에도 다양한 분야에서 수많은 응용 연구가 진행되고 있다. 최근에는 원유의 정제로부터 얻어진 석유제품을 대체하려는 다양한 움직임이 활발하게 진행되고 있다. 그 중 윤활기유로서의 식물성 오일은 급속도로 발전된 석유산업으로 인해 상용화 되지 못했던 오일로 관심의 대상이 되고 있으며 자연친화적 생분해성과 무독성, 윤활유로서의 낮은 휘발성과 우수한 계면윤활 등 대체 오일로써 충분한 가능성을 지니고 있다. 하지만 우수한 윤활 및 마모성능에도 불구하고 윤활연구에 넓게 활용되지 못했던 이유 중에는 지방산메틸에스테르가 갖는 열악한 산화안정성(oxidation stability) 및 열화안정도(thermal stability) 때문으로 보고되고 있다. 따라서 바이오디젤을 윤활기유 내 일정비율로 혼합하여 윤활성능 및 산화안정성의 변화를 확인하였으며 사구식 내마모 성능시험 후 발생되는 산화 및 열화현상을 알아보았다. 또한 산화에 따른 혼합 오일의 윤활특성 변화를 분석하였으며 이러한 결과를 바탕으로 윤활유 또는 윤활 향상제로서의 가능성을 살펴보았다.
최근 바이오디젤의 보급 활성화에 정책에 따라 석유제품에 바이오디젤 혼합량이 증가되고 있으며, 이러한 혼합량 증가에 따른 겨울철 저온특성과 산화안정성에 대한 문제가 제기되고 있다. 따라서 본 연구에서는 바이오디젤 혼합연료에 대하여 실제 저장환경을 모사하고, 저장 중 품질변화를 평가하여 저장환경별 산화 경향과 품질에 미치는 영향 등의 규명을 통해 산화 제품의 품질관리 방안을 제시하였다. 바이오디젤 혼합연료의 산화열화 평가 결과, 직접적인 햇빛 노출 및 대기노출이 없는 저장용기에서는 여름철 약 18주간은 산화에 의한 특별한 품질저하는 없었지만, PE 재질 플라스틱 용기의 경우 약 2주간의 햇빛노출에 급격한 산화가 일어나 품질저하를 초래하였다. 이러한 현상을 일부 품질변화뿐만 아니라 FT-IR 스펙트럼 변화로도 확인 할수 있었다. 하지만 산화가 상당히 진행된 연료라도 품질기준을 모두 만족하여 품질검사 항목만으로는 특별한 현상을 발견할 수 없었다. 즉, 품질기준을 만족하더라도 산화로 인한 산화 생성물(고분자물질, 유기산 등)에 의해 차량 문제를 유발할 수 있는 충분한 여지가 있었다.
하수 슬러지로부터 추출된 유지를 이용하여 바이오디젤 생산에 대해 고찰하였다. 바이오디젤 생산의 밝은 전망에도 불구하고, 이를 상용화하기 위한 노력은 매우 제한되어 있다. 주요 장애물 중 하나는 전체 생산비용의 약 70~75%를 구성하는 정제 유지의 공급 원료와 연관된 높은 가격이다. 따라서 이를 극복하기 위하여 폐유나 낮은 품질 유지 등의 저가 원료를 사용하여 바이오디젤의 생산 비용을 낮추는 기술이 제안되어 왔다. 이런 측면에서 하수 슬러지로부터 추출된 유지는 비교적 저렴하여 유망한 원료로 평가받고 있다. 본 연구에서는 하수 슬러지로부터 추출된 유지를 이용한 바이오디젤의 생산기술을 검토하였다. 하수 슬러지로부터 유지 추출공정 및 에스테르화 전환공정 및 무촉매 열화학 전환공정을 살펴보았다.
Sulfur content of diesel fuel has been cut down to under 10 ppm ULSD (ultra low sulfur diesel) level by environmental regulation with the aim of reducing exhaust emissions. This review discusses the methods and principles of sulfur reduction in diesel and presents an overview of new approaches for ultra-deep desulfurization. The deep HDS (hydrodesulfurization) problems of diesel streams is exacerbated by the inhibiting effect of co-existing aromatics, nitrogen compounds and H₂S. The new approaches to deep desulfurization includes non-HDS type processing schemes such as adsorptive, extractive and oxidative desulfurization.
바이오디젤은 식물성유지, 동물성유지 그리고 폐식용유를 전이에스테르화 반응을 시켜 만들어진 것으로 경유를 대체할 수 있는 연료이다. 본 연구에서는 다양한 원료의 식물성유지 (대두유, 폐식용유, 유채유, 면실유, 팜유)로부터 얻어진 바이오디젤의 연료 특성을 알아보았다. 다양한 식물성유지 원료로부터 얻어진 바이오디젤은 지방산메틸에스테르 함량, 동점도, 인화점, 필터막힘점, 글리세린 함량을 분석하였다. 바이오디젤의 품질기준과 시험방법은 한국 표준과 유럽 표준인 EN14214에 따라 시험하였다. 대두유, 폐식용유, 유채유, 면실유 바이오디젤은 불포화지방산이 많이 포함되어 있는 반면에 팜유 바이오디젤은 포화지방산이 많이 함유되어 있다. 저온특성, 동점도, 산화안정도와 같은 바이오디젤의 연료 특성은 지방산메틸에스테르의 구성 성분과 관련이 깊다.
본 연구는 바이오매스에 기인한 에너지와 관련하여, 첨부된 문헌에 의하여 작성되었으며, 바이오에탄올, 바이오디젤 및 바이오가스에 대하여 본 논문을 작성하게 된 배경, 제조공정, 각국의 생산량, 시장현황, 규격 및 정책을 다루었다. 이 논문은 바이오 에너지와 관련하여 전반적인 지식과 장차 바람직한 방향을 모색하는 데에 도움을 줄 것이다. 바이오에너지는 신재생에너지로서 유용한 에너지이며, 다각도로 활용 방안을 모색하여야 한다. 결론에 현재의 상황을 고려하여 몇가지 방향을 제시하였다.
최근 정부는 국가 온실가스를 효율적으로 감축시켜 국제적인 기후변화에 대응하기 위하여 여러 부문에서 기술개발을 진행 중에 있다. 이를 달성하기 위하여 정부는 화석연료를 대체하고 이산화탄소를 감축시키는 수단으로 바이오연료를 저탄소와 탄소중립자원으로 검토하고 있는 실정이다. 일반적으로, 목질계로부터 생산된 2세대 바이오연료는 수송부문에서 기존 화석연료를 대체하고 온실가스를 감축하는데 큰 효과가 있는 것으로 알려져 있다. 이러한 이유로 정부는 목질계 기반 바이오매스 액화연료(biomass-to-liquid fuel)에 대해 파일럿 수준으로 기술개발 중에 있다. 따라서 본 연구에서는 바이오매스액화연료 생산을 위한 동일공정으로 합성된 F-T(Fischer-Tropsch) 디젤의 연료적 특성을 연구하였다. 합성 F-T 디젤은 자동차용 경유에 단독 또는 혼합하여 사용할 수 있는 장점으로 인해 자동차용 경유엔진에 사용될 수 있다. 그 이유는 합성 F-T 디젤이 자동차용 경유와 비슷한 물리적 특성을 가지기 때문이다. 본 연구에 사용된 F-T 디젤은 Fischer-Tropsch (F-T) 공정을 이용하여 저온(240℃)에서 철 촉매를 가지고 합성되었다. 합성 F-T 디젤은 n-파라핀과 iso-파라핀을 함유하고, 등유와 경유 성분을 가진 C12~C23+ 분포로 이루어졌다. 합성 F-T 디젤은 합성 F-T 연료부터 증류를 통해 분리된 합성 F-T 디젤은 자동차용 경유에 비해 세탄가가 높으며, 방향족화합물은 매우 낮고, 황함량는 초저황(sulfur free) 수준으로 평가되었다. 또한 합성 F-T 디젤은 자동차용 경유와 비교하여 황과 방향족 화합물의 함량이 낮기 때문에 윤활성이 열악함을 보였다.
Hydrotreated biodiesel(HBD) is paraffinic bio-based liquid, with the chemical structure CnH2n+2, originating from vegetable oil(the process can also be applied to animal fat). The oil or fat is treated in a number of process, the most important being hydrogenation, in order to create a bio-based liquid diesel fuel. During the hydrogenation, oxygen is removed from the triglyceride and converted into water. Propane is formed as a by product and can be combusted and used for energy production. HBD can be used in conventional diesel engines, pure or blended with conventional diesel, due to its similar physical properties to diesel. This study reports the quality characteristics with chemical and physical properties as an alternative diesel fuel. Especially, HBD showed higher cetane value and number than FAME, and it is consisted of C15 - C18 n-paraffinic compounds. We also describes quality characteristics of HBD blends(2, 5, 10, 20, 30, 40, 50 vol%) in automotive diesel. HBD blends(max. 20 vol%) were the limit by the Korean specification due to poor low temperature characteristics.