Power converter devices require a high level of quality because they have a high direct connection with vehicle operation. Therefore, structural bonding was carried out by friction stir welding with excellent mechanical properties. Friction stir welding can cause structural deflection depending on the load of the welding tool, so it is important to control this for high quality flatness. In this study, pre-welding was performed before welding to minimize deflection generated during welding. And deflection reduction data according to the location of pre-welding were analyzed through dynamic analysis. As a result, based on computerized data rather than experimental data an optimized position of pre-welding was secured to minimize the deflection that occurs during friction stir welding. Through this, a process guide that enables high quality structural bonding was presented.
Screw jet equipment has been developed based on the existing accumulated experimental indicators in the semiconductor industry, and for specific performance development, it is necessary to visually check a process in which a high viscosity solution is discharged to a nozzle through a screw. Since the transparency of the exterior is not guaranteed after design and production due to the characteristics of the equipment, simulation must be performed to confirm the performance data according to the internal shape. Therefore, in this study, the screw jet equipment was simulated using the moving particle system, and through this, all processes of the screw jet internal solution flow were visually checked and computerized data capable of predicting the performance of the equipment was secured.
Driving safety of a semi-trailer is greatly reduced when driving in a section with a narrow turning radius, so a dynamic study of driving and road conditions is required. In this study, the driving stability of the semi-trailer was investigated using the RecurDyn program in consideration of the velocity and weight of the semi-trailer in the entrance curve section of the highway, and the turning angle and radius of the curved road. In order to select the model and analysis conditions according to the road type, the sloping curved road was modeled by selecting the curvature, entry length, height difference, and entrance angle of the curved section. From the analysis results, the higher the semi-trailer's entrance velocity, the heavier the weight, the narrower the entrance angle of the curved road, and the smaller the curvature, the greater the semi-trailer's maximum running angular speed which had an effect on driving stability.