검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated variables for improving adhesive strength using laser surface treatment when bonding dissimilar materials using adhesives. adhesive strength analysis was performed for CFRP and Al6061 by laser irradiation intensity, and surface roughness was measured to analyze the related results. In the case of CFRP, the adhesive strength was good when the surface was not treated. In the case of Al6061, the adhesive strength was 25 MPa when the surface was treated with 20W, the maximum output of the laser surface treatment equipment, and the adhesive strength was improved by 125% compared to the untreated specimen. In addition, by measuring the surface roughness in the experiment, it was confirmed that the higher the surface roughness, the better the adhesive strength.
        4,000원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the mechanical properties according to the rCF weight percent(10, 20, 30, 40, 50wt%) of the rCFRP specimen were evaluated and analyzed. First, to prepare rCFRP specimens, pellets were prepared according to the type of weight percent, and rCFRP tensile specimens according to ASTM D638 were prepared using an injection molding machine. Tensile tests were performed on each of 10 specimens according to weight percent conditions, and tensile strength and modulus of elasticity were calculated. For a detailed analysis of the correlation between the internal structure of the specimen and the mechanical properties, the weight percent to the constituent materials of the rCFRP specimen was calculated using mCT and used for the analysis of mechanical properties. For a more detailed analysis, a detailed analysis of the mechanical properties of rCFRP was performed through the fracture surface analysis of the specimen using FE-SEM.
        4,000원
        4.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the need of weight reduction has been required in automobile industry. In this paper, we aim to evaluate the composite sandwich panel to substitute original steel structure of commercial vehicle. The compressive and drum-peel tests were conducted to consider core materials and resin system of the sandwich panel. Based on the test, we decided the core reinforcement and matrix materials of the panel. As a result, the composite panel were composed of aluminum profile, glass fiber prepreg and aluminum honeycomb. We also confirmed the weight reduction ratio and structural safety compared to prior steel structure components by bending test and FEM simulation.
        4,000원