검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 64

        21.
        2023.05 KCI 등재 서비스 종료(열람 제한)
        This study used a batch DAF (dissolved air flotation) jar tester to evaluate the algae removal efficiency of alum and PAC coagulants during coagulation, flocculation, and flotation. Optimal coagulant dosages were 0.06 ~ 0.15 mL/L (12.0 ~ 26.0 mg Al/L,17%), 0.08 ~ 0.20 mL/L (10.0 ~ 24.0 mg Al/L, 12%), 0.25 ~ 0.30 mL/L (25.0 ~ 30.0 mg Al/L, 10%) for PAC, and 3.0 ~ 5.0 mL/L (81.0 ~ 135.0 mg Al/L, 2.7%) for alum. Turbidity of treated water was 1.0 ~ 2.0 NTU in optimal coagulation, flocculation, and flotation conditions for the four coagulants types. The amount of coagulant injected tended to decrease with increasing Al content in the coagulant, as follows : 17% PAC < 12% PAC < 10% PAC < 2.7% alum. Turbidity removal efficiencies were in the order of 12% PAC (93.6%) > 10% PAC (92.7%) > 17% PAC (91.3%) > 2.7% Alum (88.1%).
        22.
        2023.05 KCI 등재 서비스 종료(열람 제한)
        A zeolite material (ZCH) was synthesized from coal fly ash in an HD thermal power plant using a fusion/hydrothermal method. ZCH with high crystallinity could be synthesized at the NaOH/CFA ratio of 0.9. Ion-exchanged ZCH adsorbents for ammonia removal were prepared by ion-exchanging various cation (Cu2+, Co2+, Fe3+, and Mn2+) on the ZCH. They were used to evaluate the ammonia adsorption breakthrough curves and adsorption capacities. The ammonia adsorption capacities of the ZCH and ion-exchanged ZCHs were high in the order of Mn-ZCH > Cu-ZCH ≅ Co-ZCH > Fe-ZCH > ZCH according to NH3-TPD measurements. Mn-ZCH ion-exchanged with Mn has more Brønsted acid sites than other adsorbents. The ion-exchanged Cu2+, Co2+, Fe3+, or Mn2+ ions uniformly distributed on the surface or in the pores of the ZCH, and the number of acidic sites increased on the alumina sites to form the crystal structure of zeolite material. Therefore, when the ion-exchanged ZCH was used, the adsorption capacity for ammonia gas increased.
        23.
        2022.10 KCI 등재 서비스 종료(열람 제한)
        A zeolite material with a Si/Al molar ratio of 1.2 was synthesized by changing the NaOH/CFA ratio of coal fly ash (CFA) via a fusion/hydrothermal reaction in the HD thermal power plant. The change in the crystal structure of the zeolite was confirmed using XRD and SEM, and the ammonia adsorption capacities of the synthesized zeolitic materials and a commercial zeolite (Na-A zeolite) were analyzed via an ammonia temperature-programmed desorption (NH3-TPD) process. The SEM and XRD results revealed out the zeolitic materials from the coal fly ash maintained a hexagonal Linde-type crystal structure similar to that of Na-A zeolite, but the crystallinity of the synthesized zeolitic material was reduced due to impurities. The NH3 adsorption capacity, determined from the NH3-TPD analysis of was 1.122 mmol/g of the synthesized zeolitic material, which was lower than the NH3 adsorption capacity of the Na-A zeolite.
        24.
        2022.08 KCI 등재 서비스 종료(열람 제한)
        Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, △H and △G, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.
        25.
        2022.08 KCI 등재 서비스 종료(열람 제한)
        In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3・6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3・6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.
        26.
        2022.02 KCI 등재 서비스 종료(열람 제한)
        Zeolitic material, Z-Y3, was synthesized from coal fly ash (CFA) under low-alkaline conditions (NaOH/CFA ratio = 0.3 and NaOH solution concentrations of 0.0, 0.5, and 1.0 M) using a fusion/hydrothermal method. The adsorption capacities of the fabricated Z-Y3 samples for Cs and Sr ions and the desorption capacity of Na ions were evaluated. The XRD patterns of the Z-Y3 sample fabricated using a 1.0 M NaOH solution (Z-Y3 (1.0 M)) indicated the successful synthesis of a zeolitic material, because the diffraction peaks of Z-Y3 coincided with those of the Na-A zeolite in the 2θ range of 7.18-34.18. Moreover, the SEM images revealed that morphology of the Z-Y3 (1.0 M) sample, which presented zeolitic materials characteristics, consisted of sharp-edged cubes. The adsorption isotherms of Cs and Sr ions on all the fabricated Z-Y3 samples were described using the Langmuir model, and the maximum adsorption capacities of Cs and Sr were calculated to be 0.14-0.94 mmol/g and 0.19-0.78 mmol/g, respectively. The desorption of Na ions from the Cs and Sr ions adsorbed Z-Y3 samples followed the Langmuir desorption model. The maximum desorption capacities of Na ions from the Cs and Sr ions adsorbed Z-Y3 (1.0 M) samples were 1.28 and 1.49 mmol/g, respectively.
        27.
        2022.01 KCI 등재 서비스 종료(열람 제한)
        In this study, solid-liquid separation conditions for coagulation and sedimentation experiments using inorganic coagulant (aluminum sulfate and Poly-Aluminum Chloride (PAC)) were optimized with brine wastewater discharged by the epoxy-resin process. When the turbidity and suspended solid (SS) concentration in raw wastewater were 74 NTU and 4.1 mg/L, respectively, their values decreased the lowest in a coagulant dosage of 135.0 - 270.0 mg Al3+/L. The epoxy resin was re-dispersed in the upper part of wastewater treated above 405.0 mg Al3+/L. The removal efficiencies of turbidity and SS via dosing with aluminum sulfate and PAC were evaluated at initial turbidity and SS of 74 - 630 NTU and 4.1 - 38.5 mg/L, respectively. They increased most in the range from 135.0 - 270.0 mg Al3+/L. The solid-liquid separation condition was quantitatively compared to the correlation of SS removal efficiency between the coagulant dosage and SS concentration based on the concentration of aluminum ions. The empirical formula,   , shows the relationship between SS removal efficiency (R) and coagulant dosage (D) at 38.5 mg/L; it produced high correlation coefficients (r2) of 0.9871 for aluminum sulfate and 0.9751 for PAC.
        28.
        2021.09 KCI 등재 서비스 종료(열람 제한)
        In this study, zeolitic materials were synthesized from Jeju Volcanic Rocks (JVR) using a fusion/hydrothermal method at NaOH/JVR ratios of 0.6 and 1.2. The crystallinities of the zeolitic materials at NaOH/JVR ratios of 0.6 and 1.2 were 25.5% and 59.0%, respectively. It was confirmed through the SEM image that the zeolitic materials covered the zeolite particle with a cube-shaped crystals. The Co ions adsorption by the zeolitic materials were to reach the adsorption equilibrium at 120 min. It could be better simulated in the pseudo-second order adsorption kinetic equation than in the pseudo-first order adsorption kinetic equation. The adsorption capacities (qm) of Co ions could be to estimate Langmuir isotherm better than Freundlich isotherm. The maximum adsorption capacities (qm) at NaOH/JVR ratios of 0.6 and 1.2 were 55.3 mg/g and 68.7 mg/g, respectively. It was found that there was a high correlation between the crystallinity of zeolitic materials and the adsorption capacity of Co ions adsorption.
        29.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        The characteristics of ammonia-nitrogen (NH4 +-N) adsorption by a zeolitic material synthesized from Jeju scoria using the fusion and hydrothermal method was studied. The synthetic zeolitic material (Z-SA) was identified as a Na-A zeolite by X-ray diffraction, X-ray fluorescence analysis and scanning electron microscopy images. The adsorption of NH4 +-N using Jeju scoria and different types of zeolite such as the Z-SA, natural zeolite, and commercial pure zeolite (Na-A zeolite, Z-CS) was compared. The equilibrium of NH4 +-N adsorption was reached within 30 min for Z-SA and Z-CS, and after 60 min for Jeju scoria and natural zeolite. The adsorption capacity of NH4 +-N increased with approaching to neutral when pH was in the range of 3-7, but decreased above 7. The removal efficiency of NH4 +-N increased with increasing Z-SA dosage, however, its adsorption capacity decreased. For initial NH4 +-N concentrations of 10-200 mg/L at pH 7, the adsorption rate of NH4 +-N was well described by the pseudo second-order kinetic model than the pseudo first-order kinetic model. The adsorption isotherm was well fitted by the Langmuir model. The maximum uptake of NH4 +-N obtained from the Langmuir model decreased in the order of Z-CS (46.8 mg/g) > Z-SA (31.3 mg/g) > natural zeolite (5.6 mg/g) > Jeju scoria (0.2 mg/g).
        30.
        2020.08 KCI 등재 서비스 종료(열람 제한)
        Zeolite material having XRD peaks of Na-A zeolite in the 2θ range of 7.18 to 34.18 can be synthesized from the waste catalyst using a fusion/hydrothermal method. The adsorption rate of Mn ions by a commercial Na-A zeolite and the synthesized zeolitic material increased as the adsorption temperature increased in the range of 10 ~ 40℃. The adsorption of Mn ion were very rapid in the first 30 min and then reached to the equilibrium state after approximately 60 min. The adsorption kinetics of Mn ions by the commercial Na-A zeolite and the zeolitic material were found to be well fitted to the pseudo-2nd order kinetic model. Equilibrium data by the commercial Na-A zeolite and the zeolitic material fit the Langmuir, Koble-Corrigan, and Redlich-Peterson isotherm models well rather than Freundlich isotherm model. The removal capacity of the Mn ions by the commercial Na-A zeolite and the zeolitic material obtained from the Langmuir model was 135.2 mg/g and 128.9 mg/g at 30℃, respectively. The adsorption capacity of Mn ions by the synthesized zeolitic material was almost similar to that of commercial Na-A zeolite. The synthesized zeolitic material could be applied as an economically feasible commercial adsorbent.
        31.
        2020.07 KCI 등재 서비스 종료(열람 제한)
        The characteristics of heavy metal ion (Ni2+, Zn2+, and Cr3+) adsorption by zeolite synthesized from Jeju scoria using the fusion and hydrothermal method, were studied. The synthetic zeolite was identified as a Na-A zeolite by X-ray diffraction analysis and scanning electron microscopy images. The equilibrium of heavy metal ion adsorption by synthetic zeolite was reached within 60 min for Ni2+ and Zn2+, and 90 min for Cr3+. The uptake of heavy metal ions increased with increasing pH in the range of pH 3-6 and the uptake decreased in the order of Cr3+ > Zn2+ > Ni2+. For initial heavy metal concentrations of 20-250 mg/L at nonadjusted pH, the adsoption of heavy metal ions was well described by the pseudo second-order kinetic model and was well fitted by the Langmuir isotherm model. The maximum uptake of heavy metal ions obtained from the Langmuir model, decreased in the order of Zn2+ > Ni2+ > Cr3+, differing from the effect of pH on the uptake, which was mainly based on the different pH of the solutions.
        32.
        2019.06 KCI 등재 서비스 종료(열람 제한)
        A zeolitic material (Z-Y2) was synthesized from Coal Fly Ash (CFA) using a fusion/hydrothermal method under low-alkali condition (NaOH/CFA = 0.6). The adsorption performance of the prepared zeolite was evaluated by monitoring its removal efficiencies for Sr and Cs ions, which are well-known as significant radionuclides in liquid radioactive waste. The XRD (X-ray diffraction) patterns of the synthesized Z-Y2 indicated that a Na-A type zeolite was formed from raw coal fly ash. The SEM (scanning electron microscope) images also showed that a cubic crystal structure of size 1~3㎼ was formed on its surface. In the adsorption kinetic analysis, the adsorption of Sr and Cs ions on Z-Y2 fitted the pseudo-second-order kinetic model well, instead of the pseudo-first-order kinetic model. The second-order kinetic rate constant (k2) was determined to be 0.0614 g/mmol·min for Sr and 1.8172 g/mmol·min for Cs. The adsorption equilibria of Sr and Cs ions on Z-Y2 were fitted successfully by Langmuir model. The maximum adsorption capacity (qm) of Sr and Cs was calculated as 1.6846 mmol/g and 1.2055 mmol/g, respectively. The maximum desorption capacity (qdm) of the Na ions estimated via the Langmuir desorption model was 2.4196 mmol/g for Sr and 2.1870 mmol/g for Cs. The molar ratio of the desorption/adsorption capacity (qdm/qm) was determined to be 1.44 for Na/Sr and 1.81 for Na/Cs, indicating that the amounts of desorbed Na ions and adsorbed Sr and Cs ions did not yield an equimolar ratio when using Z-Y2.
        33.
        2019.06 KCI 등재 서비스 종료(열람 제한)
        In this study, zeolitic materials at Na2CO3/CFA ratio of 0.6 1.8 were synthesized from coal fly ash from a thermal power plant using a fusion/hydrothermal method. The zeolitic materials were found to have cubic crystals structure and X-ray diffraction (XRD) peaks of Na-A zeolite by XRD and SEM analysis. When the zeolitic materials were synthesized from the coal fly ash, the XRD peaks of the zeolitic materials at Na2CO3/CFA ratios of 0.9-1.8 had the same location as the XRD peaks of commercial Na-A zeolite. The XRD peaks of the Na-A zeolite (Na12Al12Si12O4827.4H2O) were confirmed in the 2θ in the range of 7.18-34.18. However, it was also confirmed that peaks of CaCO3, an impurity inhibiting synthesis of Na-A zeolite from CaO and Na2CO3 in the coal fly ash, occurred in the XRD peaks of the zeolitic materials at Na2CO3/CFA ratio of 1.5-1.8. The crystallinities of the zeolitic materials tended to increase gradually within the Na2CO3/CFA ratio range of 0.6-1.8.
        34.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        The adsorption properties of Cs+ and Cu2+ ions were evaluated by using a polysulfone scoria zeolite (PSf-SZ) composite with synthetic zeolite synthesized from Jeju volcanic rocks (scoria). In order to investigate the adsorption properties, various parameters, such as pH, contact time, reaction rate, concentration, and temperature in aqueous solutions, were evaluated by tests carried out in batch experiments. The adsorption capacities of Cs+ and Cu2+ ions increased between pH 2 but achieved equilibrium at pH 4 and above. The adsorption rate increased rapidly up to the initial 24 h, after which it plateaued ; the adsorption rate then sustained at equilibrium from 48 h. The adsorption kinetics of Cs+ and Cu2+ ions were described better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacities of Cs+ and Cu2+ ions obtained from the Langmuir model were 53.8 mg/g and 84.7 mg/g, respectively. The calculated thermodynamic parameters showed that the adsorption of Cs+ and Cu2+ ions on PSf-SZ was feasible, spontaneous and endothermic reaction.
        35.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        In this study, PAN-SZ (polyacrylonitrile scoria zeolite) beads were prepared by immobilizing Na-A zeolite (SZ-A) synthesized from Jeju volcanic rocks (scoria) on the polymer PAN. FT-IR and TGA analysis results confirmed that the SZ-A was immobilized in the PAN-SZ beads. SEM images showed that the PAN-SZ beads are a spherical shape with 2 mm diameter and exhibit a porous inner structure inside the bead. The most suitable mixing ratio of PAN to SZ-A as the adsorbent for removing Sr ions was PAN/SZ-A = 0.2 g/0.3 g. The adsorption kinetic data for Cu and Sr ions were fitted well with the pseudo-second-order model. The Cu and Sr ion uptakes followed a Langmuir isotherm model and the maximum adsorption capacities at 20℃ were 84.03 mg/g and 75.19 mg/g, respectively. The amount of Sr ion adsorbed by SZ-A on the PAN-SZ beads was about 160 mg/g, which was similar to that adsorbed by SZ-A powder. Thus, the PAN-SZ beads prepared in this study are considered to be effective adsorbents for removing metal ions in aqueous solutions.
        36.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        In this study, zeolite (Z-C1) was synthesized using a fusion/hydrothermal method from coal fly ash. The morphological structures of Z-C1 were confirmed to be highly crystalline with a cubic crystal structure. Exchange capacities of Ca2+ and Mg2+ ions in a single and a mixed solution reached equilibrium within 120 min. The exchange kinetics of these ions were well predicted by the pseudo-second-order rate equation. The exchange isotherms of the Ca2+ and Mg2+ ions matched the Langmuir isotherm better than the Freundlich isotherm. The maximum cation exchange capacities (qm) obtained by the Langmuir isotherm model were 2.11 mmol/g (84.52 mg/L) and 1.13 mmol/g (27.39 mg/L) for the Ca2+ and Mg2+ ions, respectively.
        37.
        2018.05 KCI 등재 서비스 종료(열람 제한)
        The adsorption characteristics of Cu ions were studied using the zeolite Na-A synthesized from Jeju volcanic rocks. The effects of various operating parameters such as initial concentration of Cu ions, contact time, solution pH, and solution temperature were investigated in batch experiments. The adsorption of Cu ions by Na-A zeolite was fitted well by pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity determined using the Langmuir isotherm model was 152.95 mg/g. In addition, the adsorption of Cu ions by zeolite Na-A was primarily controlled by particle diffusion model in comparison with the film diffusion model. As the temperature increased from 303 K to 323 K, ΔG˚ decreased from -2.22 kJ/mol to –3.41 kJ/mol, indicating that the adsorption of Cu ions by Na-A zeolite is spontaneous process.
        38.
        2018.02 KCI 등재 서비스 종료(열람 제한)
        In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of 2θ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.
        39.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        In order to investigate the adsorption characteristics for Sr ion using the Na-X zeolite synthesized from coal fly ash, batch tests and response surface analyses were carried out. The adsorption kinetic data for Sr ions, using Na-X zeolite, fitted well with the pseudo-second-order model. The uptake of Sr ions followed the Langmuir isotherm model, with a maximum adsorption capacity of 196.46 mg/g. Thermodynamic studies were conducted at different reaction temperatures, with the results indicating that Sr ion adsorption by Na-X zeolite was an endothermic (ΔHo>0) and spontaneous (ΔGo<0) process. Using the response surface methodology of the Box-Behnken method, initial Sr ion concentration (X1), initial temperature (X2), and initial pH (X3) were selected as the independent variables, while the adsorption of Sr ions by Na-X zeolite was selected as the dependent variable. The experimental data fitted well with a second-order polynomial equation by multiple regression analysis. The value of the determination coefficient (R2=0.9937) and the adjusted determination coefficient (adjusted R2=0.9823) was close to 1, indicating high significance of the model. Statistical results showed the order of Sr removal based on experimental factors to be initial pH > initial concentration > temperature.
        40.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        This study evaluates the adsorption properties of Sr ions in an aqueous solution of the synthetic zeolite (Z-Y1) prepared using coal fly ash generated from a thermal power plant. In order to investigate the adsorption characteristics, the effects of various parameters such as the initial concentrations of Sr ion, contact time, and solution pH were investigated in a batch mode. The Langmuir and Redlich-Peterson model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacity of Sr ions, as determined the Langmuir model, was 181.68 mg/g. It was found that by varying the Sr ion concentration, pH, and temperature, the pseudo-second-order kinetic model describes the adsorption kinetics of the Sr ion better than the pseudo-first-order kinetic model. The calculated thermodynamic parameters of ΔH0 and ΔG0 showed that the adsorption of Sr ions on Z-Y1 was occurred through a spontaneous and an endothermic reaction. We found that the adsorption of Sr ions by Z-Y1 was more affected by pH than by temperature and Sr ion concentration.
        1 2 3 4