This study evaluated the potential of utilizing the osmotic solution from dried mango processing as alternative raw material for mango wine making. Fermentation was carried out using two kinds of yeast strains Saccharomyces bayanus, Lalvin EC-1118 and Saccharomyces cerevisiae, Lalvin D-47 at 20oC for 28 days. Physicochemical analysis during fermentation was performed for each treatment and the resulting wine samples were analyzed for color, volatiles and sensory properties. Results of physicochemical analysis between the two fermenting samples as well as the wine samples show almost similar results regardless of the yeast strains. Wine color of sample wines after storage were not significantly different at p<0.05 and when compared with a commercial mango wine. From the volatile analysis, esters and alcohols constituted majority of the compounds. Production of several esters, alcohols, acids and terpenes were affected by yeast strain used in fermentation. Results of sensory analysis showed that wines fermented by S. bayanus EC-1118 strain was more acceptable although sensory scores between the treatments and the reference wine showed significant differences in all the attributes evaluated, except for bitterness. The utilization of osmotic solution from dried mango process could produce similar properties with existing commercial mango wines although there is still need for further work on the improvement of some sensory attributes of the mango wines.
ROS have been associated with pathogenic processes including carcinogenesis through direct effect on DNA and play an important role in the pathogenesis of inflammation. Because of many types of phenolic acid derivatives and flavonoids, apples have been one of the human diet since ancient times and are one of the most commonly consumed fruits in worldwide. In this study, catechin, chlorogenic acid and phlorizin dihydrate were purified and identified by HPLC and GC/MS. The contents of catechin, chlorogenic acid and phlorizin dihydrate were 1.01 mg, 7.01 mg and 3.67 mg/ kg wet weight, respectively. Catechin and phlorizin dihydrate were found to significantly inhibit oxidative DNA damage, while chlorogenic did not affect. Also, catechin inhibits NO and PGE2 production via suppressing iNOS and COX-2 expression. However, chlorogenic acid and phlorizin dihydrate did not affect. Our results show that catechin may be the most active phenolic compound in anti-oxidative damage and anti-inflammatory effect.
Lunasin is a unique 43-amino acid peptide which has shown a chemopreventive in mammalian cells and in a skin cancer mouse model. In search for new sources of lunasin and the role of cereals in cancer prevention, we report here the properties of lunasin purified from millet. Stability of millet lunasin was measured by in vitro digestibility assay using pepsin and pancreatin. Inhibition of HAT (histone acetyltransferase) and nuclear localization in mammalian cells were used to measure lunasin bioactivity as the cancer chemopreventive agent. Lunasin present in millet crude protein was stable to pepsin and pancreatin in in vitro digestion and inhibited the activities of HATs. When added exogenously, lunasin purified from millet internalized in the nuclei of mouse fibroblast cells. On the base of this result, we conclude that lunasin in millet is bioactive and consumption of millet may play an important role on cancer prevention in millet-consuming populations.
Schisandra chinensis have been traditionally used in Asia for the treatment of dyspnea, cough, mouth dryness, spontaneous diaphoresis, nocturnal diaphoresis, nocturnal emission, dysentery, insomnia and amnesia. The purpose of this study is to evaluate the protective effects of Schisandra chinensis on oxidative DNA damage and lipid peroxidation induced by ROS in non cellular and cellular system. DPPH radical, hydroxyl radical and hydrogen peroxide scavenging assay were used to measure the antioxidant activities. Phi X-174RF I plasmid DNA cleavage assay and intracellular DNA migration assay were used to evaluate the protective effect on oxidative DNA damage. MTT assay and lipid peroxidation assay were used for evaluating the protective effect on oxidative cell damage. It was found to scavenge DPPH radical, hydrogen peroxide and hydroxyl radical and it inhibited oxidative DNA damage, lipid peroxidation and cell death induced by hydroxyl radical. These data indicate that Schisandra chinensis possesses a spectrum of antioxidant and DNA-protective properties
The flowers of Buddleja officinalis are used to treat sore and damaged eyes, a condition which is similar to skin wounds. However, whether it has any protective effect on oxidative DNA damage and cell death induced by hydroxyl radical remains unclear. In this study, we evaluated the protective effects of the extracts against oxidative DNA and cell damage caused by hydroxyl radical. DPPH radical, hydroxyl radical, hydrogen peroxide and intracellular ROS scavenging assay, and Fe2+ chelating assay were used to evaluate the antioxidant properties. phi X 174 RF I plasmid DNA and intracellular DNA migration assay were used to evaluate the protective effect against oxidative DNA damage. Lastly, MTT assay and lipid peroxidation assay were used to evaluate the protective effect against oxidative cell damage. It was found to prevent intracellular DNA and the normal cells from oxidative damage caused by hydroxyl radical via antioxidant activities. These results suggest that Buddleja officinalis may exert the inhibitory effect on ROS-induced carcinogenesis by blocking oxidative DNA damage and cell death.
Lunasin is small subunit peptide of coded from Gm2S-1 gene in soybean. It has been previously demonstrated that lunasin is a novel and promising cancer preventive peptide. Lunasin peptide is found only in the seed and not other tissues. And lunasin peptide starts to appear at 5 weeks after flowering and remains in the mature seed. We report here firstly lunasin peptide identified from soybean callus induced by the tissue culture and demonstrate its anticancer properties. The lunasin was identified and purified from soybean callus aged for 6 months. The callus lunasin(1μm) inhibited the acetylation of histone H3 and H4 by 58.8% and 56.5%, respectively. And it fully inhibited foci formation compared to the values of the positive control(no lunasin) and negative control(no MCA). Purified lunasin was able to internalize into the cell and localized in the nucleus.
For storage periods of tubers in Chinese yam, the levels of ~textrmGA44 and ~textrmGA20 was constant, meanwhile both ~textrmGA53 and ~textrmGA19 level were always higher than that of ~textrmGA44 and ~textrmGA20 ㆍ ~textrmGA9 content as precursor of ~textrmGA4 was not changed during storage. ~textrmGA24 content was low to below 0.2 ng for 90 days after storage, ~textrmGA36 content as precursor of ~textrmGA4 like ~textrmGA9 was about 6-8 fold higher than that of ~textrmGA9 during storage. GA contents of the two gibberellin biosynthetic pathways were gradually increased when storage periods were progressed. Bioactive GA1 content as the GA members of an early C-13 hydroxylation was always constant, and its content was very low as below 0.1ng per dry weight, meanwhile, bioactive ~textrmGA4 content as the GA members of non C-13 hydroxylation was drastically increased, also, its content was highest at 90 days after storage, and then decreased at 120 days after storage. Consequently, we suggest that ~textrmGA4 may be involved in controlling tuber sprouting in Chinese yam.
The induction of enzymes and the accumulation of their end products associated with self-defense mechanism in rice were investigated. When rice leaves were irradiated with UV light, activities of diterpene cyclase, phenylalanine ammonia-lyase (PAL), and cinnamic acid 4-hydroxylase (CA4H) were induced and rice phytoalexin, momilactone A was accumulated. The content of p-coumaric acid in rice leaves was closely correlated with self-defense or allelopathic potential against barnyardgrass. UV-challenged rice leaves gave rise to the inhibition of barnyardgrass growth
To study the effects of metal ions on the activity of anti-oxidase enzymes, the activity of superoxide dismutase (SOD) and peroxidase (POD) and isozyme patterns of Brassica juncea have been studied after treating with CD, Cu, Zn, and Al. The activity of SOD after treating with metal ions was higher than that of untreated control. SOD activity in leaves increased by treatment of 50 ppm of Zn and 500 ppm of Al. POD in stems gave highest activity after treating with 500 ppm of Cu. When the activity was compared by plant parts, lowest POD activity was observed in leaves in which protein content was higher than other tissues. When the activity was expressed as percentage of control, SOD activity was increased after treating with metal ions. SOD activity in leaves and roots of metal treated plant was significantly increased under the metal ions stress conditions. In the roots of 50 ppm of Zn treated plant, SOD activity was extremly high. POD activity was inhibited with Cd and Zn treatment in all parts of the plant. However, in leaves and stems, there was marked increase in activity after treating with Cu. The patterns of SOD isozyme after metal treatment show that two bands were stained in all metal ion treated and that no new band appeared. POD isozyme band intensity resulting from the treatment of metal ions was in order of roots > stems > leaves, but there was no significant difference.