검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene is a suitable transducer for wearable sensors because of its high conductivity, large specific surface area, flexibility, and other unique considerable features. Using a simple, fast galvanic pulse electrodeposition approach, a unique nonenzymatic glucose amperometric electrode was successfully developed based on well-distributed fine Cu nanoparticles anchored on the surface of 3D structure laser-induced graphene. The fabricated electrode allows glucose detection with a sensitivity of 2665 μA/mM/cm2, a response time of less than 5 s, a linear range of 0.03–4.5 mM, and a LOD of 0.023 μM. It also detects glucose selectively in the presence of interfering species such as ascorbic acid and urea. These provide the designed electrode the advantages for glucose sensing in saliva with 97% accuracy and present it among the best saliva-range non-enzymatic glucose sensors reported to date for real-life diagnostic applications.
        4,600원
        2.
        2016.08 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, antioxidant activities and physicochemical properties of chocolate fermented with Lactobacillus plantarum CK10 were investigated. The pH level decreased from 5.26±0.02 to 3.98±0.06 during fermentation while titratable acidity increased from 5.36±0.19 to 13.31±0.34. The total polyphenol and flavonoid contents slightly increased during fermentation, but it was numerically negligible. Slight increase and decrease in the radical scavenging activities of chocolate, against DPPH-, ABTS-, and alkyl- radical, were observed during 32 hr of fermentation, but the changes were not statistically relevant. Composition ratios (% area by GC analysis) of lactic acid, xanthosine, and theobromine increased with fermentation time while hydroxymethylfurfural (HMF) and caffeine decreased after 32 hr of fermentation, in the order of xanthine (22.7%), theobrome (20.0%), lactic acid (14.9%), HMF (9.1%) and caffeine (9.0%). However, there was no remarkable changes in theobromine and caffeine contents in chocolate during fermentation.