The initial radionuclide migration quantity depends on the total amount of solubilized species. Geochemical modeling based on a thermodynamic database (TDB) has been employed to assess the solubility of radionuclides. It is necessary to evaluate whether the TDB describes the domestic repository conditions appropriately. An effective way to validate the TDB-based modeling results is through direct comparisons with experimentally measured values under the conditions of interest. Here, the solubilities of trivalent Sm, Eu, and Am were measured in synthetic KURT-DB3 groundwater (Syn- DB3) and compared with modeling results based on ThermoChimie TDB. Ln2(CO3)3·xH2O(cr) (Ln = Sm, Eu) solids were introduced into the Syn-DB3 and dissolved Sm and Eu concentrations were monitored over 223 days. X-ray diffraction analysis confirmed that the crystallinity of the solid compounds was maintained throughout the experiments. The dissolved Sm and Eu concentrations at equilibrium were close to the predicted solubilities of Sm2(CO3)3(s) and Eu2(CO3)3(s) based on the ThermoChimie TDB. The Am solubility measured under oversaturated conditions was comparable to the measured Eu concentrations, although they were measured under different experimental settings. More experimental data are needed for Am-carbonate solid systems with careful characterization of the solid phases to better evaluate Am solubility in domestic groundwater conditions.
This study investigates the role of the NAC transcription factor ANAC032 in regulating abscisic acid (ABA)-dependent stress responses and its involvement in sugar signaling pathways. Arabidopsis seedlings with overexpressed or knock-out ANAC032 were examined for their sensitivity to ABA, glucose, and fluridone to elucidate the functional role of ANAC032 in ABA and high glucose-mediated growth retardation. Our results showed that ANAC032 negatively regulates ABA responses, as ANAC-overexpressing plants exhibited higher ABA sensitivity, while anac032 mutants were less sensitive. Under high glucose conditions, anac032 mutants demonstrated hyposensitivity, with germination rates higher than wild-type and ANAC032-overexpressing plants. Additionally, yeast two-hybrid screening identified three NAC proteins, ANAC020, ANAC064, and ANAC074, interact with ANAC032. These findings highlight ANAC032’s role in stress signaling pathways and its potential interactions with other NAC proteins, contributing to a better understanding of transcriptional regulation in plant stress responses and possibly expanding to forage crop development.
Background: Treadmill training is an effective intervention method for improving the walking ability of stroke patients, and taping is effective for stabilizing joints. However, taping interventions have not been implemented during treadmill training. Objectives: To examine whether treadmill training with an elastic tape or treadmill training with a non-elastic tape could be more effective in stroke patients. Design: A single blinded, randomized, controlled, comparative study. Methods: 22 stroke patients were randomly allocated to two groups: the elastic group (treadmill gait training with ankle elastic tape on the paretic side) or the non-elastic group (treadmill gait training with non-elastic tape on the paretic side). All participants performed 60 min of comprehensive rehabilitation therapy and treadmill training with an elastic tape or non-elastic tape for 20 min. Results: 10-meter walk test and timed up-and-go test results after training differed significantly from baseline in both groups (P<.05), but significantly larger gains were observed in the elastic group (10-meter walk test, -17.1%; timed up-and-go test, -18.49%; P<.05, respectively). Conclusion: Treadmill gait training with elastic tape on the affected ankle joint might be more effective at improving the walking and balancing abilities of stroke patients.
This study demonstrated a rapid and simple method for the determination of seven anions including halides and oxyhalides from the KURT underground water sample by capillary electrophoresis with UV detection. In nuclear waste disposal, some anions such as iodine, selenium, and technetium have been of great concern due to its high mobility and toxicity with a long half-life. It has been needed for a reliable analysis of anionic speciation because the high mobility of anions is easily affected by environmental conditions especially pH and salinity of underground water. Here this project is to develop a fast separation of seven anions including iodide, iodate, and selenite using capillary electrophoresis. The electroosmotic flow (EOF) was suppressed using a poly (ethyleneglycol) -coated capillary (DB-WAX capillary). As a result, anions migrated depending on their mobility under a reverse polarity condition (-15 kV) and the analysis time was within 15 min. UV detection was used at 200 nm. The RSDs for migration time were between 0.7% and 1.3% except for selenite of 5.1%. The RSDs for peak area were obtained between 2.9% and 7.4%. The calibration curves were linear from 10 to 200 mg/L with correlation coefficients greater than 0.9952. The LODs were 7.3, 10.9, 11.3, 12.9, 13.0, 13.9, and 17.4 mg/L for iodide, nitrate, bromide, selenite, bromate, tungstate and iodate. The KURT underground water sample spiked with seven anions at 50 mg/L were analyzed. The recoveries of spiked KURT sample ranged from 93.4% to 99.3%. The proposed method was successfully applied to determine seven anions in underground water sample.
In the establishment of procedures for managing spent fuel, the development of an information system for data management is an indispensable prerequisite. Given the prolonged period of spent nuclear fuel management, marked by numerous personnel changes and the anticipation of vast data retention, addressing this matter appropriately is imperative, particularly in the specialized field of spent nuclear fuel operations. Recognizing the need for a method to mitigate these challenges, we endeavored to apply semantic technology to the information system. To achieve this, we constructed the ontology of spent nuclear fuel and conducted research to transform it into a relational database. As a result, the information system, developed by the application of semantic technology, has attained the capability to comprehend and perceive relationships among information itself. Through this research, the system not only addresses previously identified concerns but also enhances its versatility, enabling it to perform functions previously unattainable within existing information systems.
In 2020, severe defoliation was reported in Abies holophylla plantations located in Hwacheon-gun, Gangwon-do. This damage was attributed to an outbreak of an unidentified sawfly species from the genus Cephalcia (Hymenoptera: Pamphiliidae). The larvae of this sawfly caused significant defoliation of the leaves. This pest has been identified as Cephalcia koreana Park & Jung, sp. nov., described as a new species in 2023. To investigate the occurrence pattern and density of C. koreana, we set up emergence traps and analyzed samples from affected branches. Our results showed that the density peaks for adults, eggs, and larvae were in mid-May, late May, and early June of 2021, respectively. However, their density decreased sharply after a notably cold spring period in 2022. Here, I aim to discuss the outbreaks of insect pests and their population dynamics.
본 연구의 목적은 청소년의 사회재난에 대해 안전하다는 인식이 학교생활 만족도에 미치는 영향에 있어 우울과 스마트폰 의존의 순차적 매개효과를 검증하는 것이다. 이를 위해 <한국아동·청소년패널 2018> 자료 중 중1패널 3차년도 자료를 활용하였고, Hayes(2013)의 SPSS PROCESS MACRO Model 6를 활용하여 순차적 매개효과 분석을 실시하였다. 연구결과는 다음과 같다. 첫째, 청소년의 사회재난 인식은 학교생활 만족도에 직접적으로 영향을 미치지 않았다. 둘째, 청소년의 사회재난 인식 과 학교생활 만족도와의 관계에서 우울과 스마트폰 의존의 매개효과가 각각 유의미했다. 셋째, 청소년 의 사회재난 인식과 학교생활 만족도와의 관계에서 우울과 스마트폰 의존의 순차적 매개효과가 나타났 다. 요컨대, 사회재난으로부터 안전하다는 인식을 가진 청소년들일수록 우울 수준이 낮았고, 이들은 스마트폰 의존이 낮았으며, 결과적으로 학교생활에 대한 만족도가 높았다. 본 연구는 이 같은 연구결과 를 바탕으로 청소년의 사회재난 안전 인식을 증대하고 학교생활 만족도를 높일 수 있는 정책적·실천적 제언을 하였다.
In determining artwork prices, the identification of characteristics of the artist is crucial. While the impact of demographic profiles of artists has been examined in the literature on art pricing, the relationships among artists have been highly disregarded. In the current research, the authors focus on the measures of network centrality derived from group exhibitions in order to investigate their influence on artwork prices. The analysis results suggest that degree centrality and closeness centrality positively affect artwork prices, whereas betweenness centrality has an adverse effect. Moreover, network centrality values play a more important role in explaining artwork prices than historical reputation indexes such as gender, nationality, time elapsed after death, and main residencies of the artists. This study contributes to branding literature, while also providing art marketers with valuable insight into artist branding.
Solubility and species distributions of radionuclides in domestic groundwater conditions are required for the safety assessment of deep underground disposal system of spent nuclear fuel (SNF). Minor actinides including Am contribute significant extents to the long-term radiotoxicity of SNF. In this study, the solubility of Am was evaluated in synthetic groundwater (Syn-DB3), which were simulated for the groundwater of the DB3 site in the KAERI Underground Research Tunnel (KURT). Geochemical modeling was performed based on the ThermoChimie_11a (2022) thermochemical database from Andra to estimate the solubility and species distributions of Am in the Syn-DB3 condition. Dissolved Am concentrations in the Syn-DB3 were experimentally measured under oversaturation conditions. Am(III) stock solution in perchlorate media was sequentially diluted in Syn-DB3 to prepare 8 μM Am(III) in Syn-DB3. The pH of the solutions was adjusted to be in the range of 6.4–10.5. A portion of the samples was transferred to quartz cells for UV-Vis absorption and time-resolved laser fluorescence spectroscopy studies and the rest were stored in centrifuge tubes. The absorption spectra of the samples were monitored over 70 days and the results suggest that Am colloidal particles were formed initially in all the samples and precipitated rapidly within two days. Over the experimental period of 236 days, small volume (10 μL) of the samples in the centrifuge tubes were periodically withdrawn after centrifugation (18000 rpm, 1 hr) for the liquid scintillation counting to measure the concentrations of Am dissolved in Syn-DB3. In the end of the experiments, pH of the samples was checked again and the final dissolved Am concentrations were determined after ultrafiltration (10 kDa) to exclude the contribution of colloidal particles. In the pH range of 8-9, which is relevant to the KURT-DB3 groundwater condition, the measured dissolved Am(III) concentrations were converged to around 10-8 M. These values are higher than the solubility of AmCO3OH:0.5H2O(s), but lower than that of AmCO3OH(am). There was no indication of transformation of the amorphous phase to the crystalline phase in our observation time window.
Dissolution behaviors of ThO2(cr) and PuO2(cr) in synthetic groundwater were investigated at room temperature (23 2°C) under atmospheric conditions. The synthetic groundwater was prepared according to the chemical composition of the KURT-DB3 groundwater. The pH and Eh of the synthetic groundwater were pH 8.9 and 0.5 V, respectively, and the major components were Na, K, Ca, Mg, Si, Cl, SO4, F and HCO3 ions. A few mg of ThO2(cr) and PuO2(cr) powder were added in the synthetic groundwater and the concentrations of Th and Pu in supernatant were monitored for 5 months of reaction time. The concentrations of Th before and after ultracentrifugation were compared, while the solid-liquid phase separation of Pu samples could not be applied due to the small volume of sample solutions. The concentrations of Th and Pu were measured by ICP-MS and alpha spectrometry, respectively. Geochemist’s Work Bench (GWB, standard, 17.0) was applied for the modeling with ThermoChimie TDB v. 11a, which was updated with the latest NEA-TDB (vol. 14). Aqueous species distributions and solubility limiting solid phases of Th and Pu under the synthetic groundwater conditions were evaluated. The results of geochemical modeling indicate that aqueous Th-OH-CO3 ternary species and Pu(IV) species are dominant in solutions equilibrated with ThO2(s) and PuO2(am, hyd), respectively. The dissolution behaviors of ThO2(cr) and PuO2(cr) are comparable to the dissolution of ThO2(aged, logKsp = 8.5) and the oxidative dissolution of PuO2(am, hyd) in the presence of PuO2(coll, hyd), respectively.
Numerous spent nuclear fuels are generated every year in Korea. To solve the spent nuclear fuel problem within saturated temporary storage, the authorities are readying to build an interim storage and a permanent disposal facility in the country. At the same time, the authorities are readying to establish a management procedure for spent nuclear fuel. In the future, the authorities need to make and apply the Database of spent nuclear fuel to practice the management procedure. However, the structure of a traditional database is not reasonable for information management because it has a problem with listing data and identifying data features due to its structure. In addition, the traditional database always exists human error from working in Excel program by a human. Therefore, this research proposes a new standard information management model based on Semantic Web technique. Semantic Web uses a data structure named ontology. By using the ontology in the information database of the spent nuclear fuel, users, such as institutions related to management, could more easily recognize and understand the Database. Furthermore, since this task proceeds in the ontology construction program, the human error in the new model reduces rather than an environment of the traditional database.
The spent fuel safety information delivered from the consignor to the disposal facility operator directly affects the operation and safety of the disposal facility. Therefore, the operator of a disposal facility must perform data quality management to increase data reliability, and anomaly detection is a representative method among quality control methods. We propose a quality control method to detect anomalies using XGBoost, known for its excellent performance, prevention of overfitting, and fast training speed. First, we select significant variables such as release burnup, enrichment, and amount U from the spent fuel safety information and train models for each variable using only normal data. A model trained using only normal data generates a small error for a normal pattern and a large error for an abnormal pattern. Then, when the data error exceeds a set threshold, the data is determined as an anomaly. In this paper, we implement the XGBoost models using virtual spent fuel information and optimize the hyperparameter of XGBoost using a simulated annealing method for high accuracy. The optimized XGBoost models show high accuracy in a normal input and provide a stable prediction value even in an abnormal input. In addition, we perform anomaly detection by including defect input in the data to validate the presented method. The proposed method shows the result of effectively classifying normal values and anomalies.
Sabotage on nuclear power plants are of great national and social significance and long-term damage, the IAEA’s “Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Rev.5) provides a standard direction for physical protection of their nuclear facilities in almost all member countries, including Korea and the United States. In the United States, Federal Law 10 CFR Part 73, Sections 73.40 to 73.57 specify requirements for physical protection of nuclear power plants, performance criteria, physical protection systems and components thereof, core information, and physical protection for key activities related to nuclear power plant operations. Accordingly, the USNRC carefully examines whether the plant meets the physical protection objectives and criteria set out in SRP 13.6.2, whether the core area/protection area is properly set up to protect against internal and external physical attacks, sabotage threats, and what design measures and facilities are being set up for these areas. The Department of Homeland Security (DHS), established in 2002 following the 2001 World Trade Center attacks, authorized federal, local governments, and authorities National Infrastructure Protection Plan (NIPP) to protect facilities from terrorist attacks and man-made physical attacks in 2007. NIPP clarifies the great principles and governance of the physical protection of national infrastructure in the United States presented by DHS. There are many physical protection design guidelines and technical standards for preventing attacks from terrorists or internal and external sabotage attackers, improving the viability of mitigating the damage in case of emergency, and achieving efficient recovery from such damage. Particularly important, small-scale damage/damage at a particular location of a major facility is extended to the entire facility, resulting in asymmetrical large-scale damage, so-called “Progressive Collapse” under initial attack loads, minimizing local damage, and protecting the building’s integrity through isolation from other structural components. Consequently, this paper deal with physical protection system design on Unite states standards and practices for applying to physical protection system design in Republic of Korea.
Elucidating the redox behavior of actinide elements in aqueous solution is important for the safety assessments of nuclear waste disposal. Despite ongoing endeavors for decades, some points of uranium and plutonium redox mechanism are ambiguous and unclear. In this study, the electrochemical redox behaviors of U(VI) and Pu(III and VI) ions in perchloric acid media were investigated by using a gold (Au) working electrode via cyclic voltammetry (CV) and cyclic square wave voltammetry (CSWV) with the temperature control (10–55°C). The cyclic voltammograms of U(V/VI), Pu(III/IV) and Pu(V/VI) redox couple were transformed to semi-integral form to calculate the diffusion coefficient and formal potential in the electrochemical quasi-reversibility prevailed system. The CSWV was additionally used for a more precise interpretation of the redox mechanism. From the investigation of the redox chemistry of U(VI) ions, a clear U(V/VI) redox peak and one unidentified oxidation peak appear around pH 2. With the temperature control and CSWV, the relevance of the oxidation peak and U(IV) was confirmed. In the case of voltammetry of Pu(VI) solution, Pu(V/VI) redox peak and an additional reduction peak appear. The redox behavior resposible for this additional reduction peak are also examined. The cyclic voltammograms of Pu(III) solution show a clear reversible redox reaction of Pu(III/IV) couple. With the temperature control, using the change of formal potential at ionic strength 1 M (ClO4 −), thermodynamic parameters of conditional molar enthalpy and entropy change were evaluated in this system.
To predict the long-term behaviors of actinides in aqueous environments, complexation behaviors of actinides should be understood. Various organic ligands of chelating aromatic structure appearing in humic substances are known to form stable aqueous complexes. In this study, a benzene diol (or catechol) derivative, i.e., 4-nitrocatechol (nCA) is selected and its chemical equilibria including acid dissociation and complexation with U(VI) ion were examined using spectroscopic methods. In addition, the effect of ionic strength (Is) on those equilibria was evaluated by adjusting the level of NaClO4 in aqueous solutions. First, the experiments to determine the acid dissociation constant (pKa) of nCA were carried out in aqueous solutions with different ionic strengths from 0.01–2.0 M. The acid dissociation constants of nCA (pKa1) were measured to 6.73 ± 0.07, 6.69 ± 0.03, 6.38 ± 0.03, 6.09 ± 0.12, and 6.04 ± 0.07 at Is = 0.01, 0.1, 0.5, 1.0, and 2.0, respectively. These results were confirmed through the UV-Vis absorption spectral data analysis using the HypSpec program. As the pKa1 decreases as the ionic strength increases, except for Is = 2.0, these data were further analyzed with SIT (Specific ion Interaction Theory). Typically, as the solution becomes basic, a red shift is shown in the absorption spectrum. This effect can be understood from the intramolecular charge transfer (ICT) occurring in the deprotonated structures of nCA. At higher pH similar trends were also observed for measurement of pKa2. However, the determination of pKa2 is found not to be straightforward since a dimer formation equilibrium of nCA was observed as the ionic strength increased. This phenomenon will be discussed in detail with other supporting experimental results. Second of all, the complexation between the U(VI) and nCA in aqueous solutions was also examined. It was shown that nCA can easily form complexes with U(VI) ions at a wide range of pH via the deprotonation of their hydroxyl groups. U(VI)-nCA complexation will be further characterized by UV-Vis spectroscopy, IR and NMR by varying the solution ionic strength. The metal-ligand binding stoichiometry will be confirmed, for example, through the Job’s method. Finally, the acid dissociations constant and stability constants that were determined in this study will be used to provide species diagrams of aqueous U(VI)-nCA systems at a wide range of pH considering the effect of solution ionic strengths.
In December 26, 2017, the Ministry of Science and ICT’s Cyber Infringement Response Division, the KCC’s Internet Ethics Team, and the National Police Agency’s Cyber Investigation Division announced the “Comprehensive IP Camera Measures” to prevent damage to users by strengthening IP camera security. The background was a countermeasure against the spread of public anxiety such as leakage of privacy and threatening national security as cases of illegal filming and distribution of videos by accessing IP cameras without permission at that time occurred. At that time, the measures consisted of three major strategies: institutionalization of products with security (manufacturing and import stage), rapid action and response to hacking threats in advance, and intelligent advancement of IP cameras (industrial development) and fostering various video and safety industries. This paper deals with the development of installation standards and evaluation indicators for CCTV systems installed in the relevant national security facility. When designing a CCTV system, the resolution and sensitivity of the camera, the angle of view of the lens, and the aperture should be selected in consideration of the length and width of the monitoring area. When it is necessary to determine an alarm based on the recorded image information, the resolution of the recording device should also be considered. If there is a restriction on the surveillance area of the camera due to topographic features, visitors, etc., additional cameras should be considered. Additional surveillance cameras should be considered to effectively monitor sections where fences are bent or sections with severe slopes. When designing a CCTV system, supplementary means that can be used for intrusion monitoring should be devised even if the entire or part of the system causes a failure. KISA’s performance test and certification procedures shall apply mutatis mutandis to intelligent CCTV image analysis test procedures and certification. Intelligent CCTV image analysis evaluates the performance of the equipment by comparing files of ground truth (GT) and system alarm (SA) for verification to calculate the evaluation score.
Forage crop management is severely challenged by global warming-induced climate changes representing diverse a/biotic stresses. Thus, screening of valuable genetic resources would be applied to develop stress-tolerant forage crops. We isolated two NAC (NAM, ATAF1, ATAF2, CUC2) transcription factors (ANAC032 and ANAC083) transcriptionally activated by multi-abiotic stresses (salt, drought, and cold stresses) from Arabidopsis by microarray analysis. The NAC family is one of the most prominent transcription factor families in plants and functions in various biological processes. The enhanced expressions of two ANACs by multi-abiotic stresses were validated by quantitative RT-PCR analysis. We also confirmed that both ANACs were localized in the nucleus, suggesting that ANAC032 and ANAC083 act as transcription factors to regulate the expression of downstream target genes. Promoter activities of ANAC032 and ANAC083 through histochemical GUS staining again suggested that various abiotic stresses strongly drive both ANACs expressions. Our data suggest that ANAC032 and ANAC083 would be valuable genetic candidates for breeding multi-abiotic stress-tolerant forage crops via the genetic modification of a single gene.