검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 47

        41.
        2015.07 서비스 종료(열람 제한)
        Although the overall structure of the chloroplast genome is generally conserved, a number of sequence variations have been identified, which are valuable for plant population and evolutionary studies. Here, we constructed a chloroplast variation map of 30 landrace rice strains of Korean origin, using the Oryza rufipogon chloroplast genome (Genbank: NC_017835) as a reference. Differential distribution of single nucleotide polymorphisms (SNPs) and indels across the rice chloroplast genome is suggestive of a region-specific variation. Population structure clustering revealed the existence of two clear subgroups (indica and japonica) and an admixture group (aus). Phylogenetic analysis of the 30 landrace rice strains and six rice chloroplast references suggested and supported independent evolution of O. sativa indica and japonica. Interestingly, two “aus” type accessions, which were thought to be indica type, shared a closer relationship with the japonica type. One hypothesis is that “Korean aus” was intentionally introduced and may have obtained japonica chloroplasts during cultivation. We also calculated the nucleotide diversity of 30 accessions and compared to six rice chloroplast references, which shown a higher diversity in the indica and aus groups than in the japonica group in lower level substitution diversity.
        42.
        2015.07 서비스 종료(열람 제한)
        Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remain as a great challenge, it is important to establish piratical ways to manage them. A core collection, by definition, refers to a subset of entire population but preserves most of the possible genetic diversity, enhancing the efficiency for germplasm utilizations. Here we reports the whole genome resequencing of the 137 Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in Korean genebank of Rural Development Administration (RDA). We implemented the Illumna HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8x depth using Nipponbare as a reference. Comparisons of the sequences with the reference genome yield more than 15 million(M) single nucleotide polymorphisms (SNPs) and 1.3M insertion/deletion (INDELs). Phylogenetic and population analyses using 2,046,529 high quality SNPs successfully assigned each rice accessions to the relevant subgroups, suggesting those SNPs comprehensively capture evolutionary signatures accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for 4 exemplary agronomic traits from the KRIC_CORE manifest the utility of KRICE_CORE, identifying previously defined gene or novel genetic polymorphisms that potentially regulate the important phenotypes. This study provides strong evidences that the size of KRICE_CORE is small but contains such a high genetic and functional diversity across the genome. Thus those resequencing results will be useful for future breeding, functional and evolutionary studies in the post-genomic era.
        43.
        2014.07 서비스 종료(열람 제한)
        Rice is the major food for half of the world population. The nutrition component in rice is critical for improvement of people’s health. Vitamin E serves as important antioxidant by quenching the free radical intermediates and thus protects the cell membrane. Because of the high nutritional value and the benefits of vitamin E in human health, increasing the tocochromanol content of major agricultural crops has long been in the focus of breeding programs and genetic engineering approaches. The key genes involved in tocopherol biosynthesis have been elucidated in Arabidopsis and other model organisms. Quantitative trait locus (QTL) study performed in Arabidopsis suggested that some of these key genes and a few additional loci contribute to natural tocopherol variations. Identifying such genetic variations in rice, enrich our understanding of the genetic mechanisms controlling tocopherol variation, which can be directly applied to rice breeding programs. In this study, we used genome-wide association mapping with high-resolution density SNPs of rice core set to identify natural allelic variations, which contribute to tocopherol increase in rice
        44.
        2014.07 서비스 종료(열람 제한)
        As one of the most important crop, rice is not only a staple food of half world’s population but a wonderful model plant, which has been leading the evolution and functional genomics study. The next-generation sequencing technology are expediting rice genomic study, by providing a simple but powerful way. In this study, we re-sequenced a core collection of 137 rice accessions from all over the world along with 158 Korean breeding varieties. Finally, 6.3G uniquely mapped reads were obtained, and about 10 million SNPs and ~1.2 million InDels were identified with average sequencing depth of 7.5X. These will help us to maximize our germplasm utilization and assists all the deep research in population dynamics and functional studies. Here, we’d like to show the approaches applied to resequencing data mining and on-going activities.
        45.
        2014.07 서비스 종료(열람 제한)
        Preharvest sprouting resistance (PHS) causes the reduction of grain yield and also affects the quality of grains, resulting significant economic losses. PHS and its related traits were evaluated and observed in wide range among the 137 diverse rice accessions. To mine the associated signals for PHS resistance, genome wide association study (GWAS) was performed using phenotype data and whole genome resequencing data of 137 diverse rice accessions. This study not only could detect the previously identified dormancy and PHS associated genes but also explore the new candidate genes associated with the PHS and related traits. An example of them is seed dormancy 4 (Sdr4) gene which was found to be associated with germination % at day 14 (D14). This study provided the potential associated candidate genes which might be very useful to improve the PHS resistance in future rice breeding.
        46.
        2014.07 서비스 종료(열람 제한)
        Genetic resources play a great role in crop breeding because of containing a broad array of useful genes. Currently, the harder are rice breeders trying to develop new rice cultivars with the improved traits, they are more often handicapped by the limited availability of germplasm resources. Thus, a desirable core or heuristic (HS) set of germplasm with maximum genetic diversity can be usefully exploited to breakthrough the present and future challenges of the rice breeding. As such we previously developed the rice HS sets of 166 diverse accessions out of a total 24,368 rice germplasms. Here, we report a large-scale analysis of the patterns of genome-wide genetic variations accumulated in the HS as well as Korean rice over the time. We characterized a total of about 11.8 millions of single nucleotide polymorphisms (SNPs) across the rice genome from resequencing a total of 295 rice genomes including 137 HS and 158 KB rice sets, with an average of approximately 10x depth and > 90% coverage. Using about 460,000 high-quality SNPs (HQSNPs), we specified the population structure, confirming our HS set covers all the rice sub-populations. We further traced the relative nucleotide variabilities of HQSNPs and found the level of the diversity was dynamically changing across the KB genome, which reveals the selection history of KB lines in the past and present. In addition, the results of our genome wide association study (GWAS) suggests that our HS can be also a good reservoir of valuable alleles, pinpointing those alleles underlying the important rice agronomical traits. Overall, the resequencing of our HS set re-illuminates the past, present of the germplasm utilization, which will support the Korean rice breeding in the future.
        47.
        2013.07 서비스 종료(열람 제한)
        AGenome-wide association studies (GWAS) have proven a useful technique for identifying genetic loci responsible for natural variation in rice. With the fast developed next-generation sequencing technology, it is possible for people to carry out GWAS by phenotyping different traits. However, how to make full use of huge data, abandon unnecessary data, and solve the problem of data application effectively seems still an obstacle for many researchers. Taking the case of whole-genome resequencing of Korean authentic rice core set, here we present a general technological path of GWAS including: 1) a schematic view of sequencing-based GWAS in rice; 2) a user-friendly and interactive web application for GWAS in rice by the aid of experience from Arabidopsis; 3) Haplotype and association analysis of candidate genes in a certain mechanism pathway, giving 10 starch synthesis genes as example; and 4) functional validation by Trans- and Mata-Omics analysis.
        1 2 3