검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2014.07 서비스 종료(열람 제한)
        As one of the most important crop, rice is not only a staple food of half world’s population but a wonderful model plant, which has been leading the evolution and functional genomics study. The next-generation sequencing technology are expediting rice genomic study, by providing a simple but powerful way. In this study, we re-sequenced a core collection of 137 rice accessions from all over the world along with 158 Korean breeding varieties. Finally, 6.3G uniquely mapped reads were obtained, and about 10 million SNPs and ~1.2 million InDels were identified with average sequencing depth of 7.5X. These will help us to maximize our germplasm utilization and assists all the deep research in population dynamics and functional studies. Here, we’d like to show the approaches applied to resequencing data mining and on-going activities.
        2.
        2014.07 서비스 종료(열람 제한)
        A sugary mutant with low total starch and high sugar content was compared with its wild type Sindongjin for grain-filling caryopses. In the present study, developing seeds of Sindongjin and sugary mutant from the 11th day after flowering (DAF) were subjected to RNA sequencing (RNA-Seq). A total of 30,385 and 32,243 genes were identified in Sindongjin and sugary mutant. Transcriptomic changes analysis showed that 7,713 differentially expressed genes (DEGs) (log2 Fold change ≥1, false discovery rate (FDR) ≤ 0.001) were identified based on our RNA-Seq data, with 7,239 genes up-regulated and 474 down-regulated in the sugary mutant. A large number of DEGs were found related to metabolic, biosynthesis of secondary metabolites, plant-pathogen interaction, plant hormone signal transduction and starch/sugar metabolism. Detailed pathway dissection and quantitative real time PCR (qRT-PCR) demonstrated that most genes involved in sucrose to starch synthesis are up-regulated, whereas the expression of the ADP-glucose pyrophosphorylase small subunit (OsAGPS2b) catalyzing the first committed step of starch biosynthesis was specifically inhibited during the grain-filling stage in sugary mutant. Further analysis suggested that the OsAGPS2b is a considerable candidate gene responsible for phenotype of sugary mutant.
        3.
        2014.07 서비스 종료(열람 제한)
        Rice (Oryza sativa L.) is one of the most important staple foods that feed more than 50% of the world’s population. With the improving of people’s living standard, eating quality of rice become the most important aims in current breeding programs. Amylose content (AC) and gelatinization temperature (GT) are the two main measures to estimate the rice grain quality. In rice, a total of 27 genes directly involved the rice starch biosynthesis effecting on the rice eating quality. It clearly identified chromosome 6 to be rich in the genes related to AC and GT properties (GBSS I, SSIIa and SBE I) along with other genomic regions scattered in rice genome. Rice blast, caused by the fungal pathogen M. oryzae, is the most devastating disease of rice and severely affects crop stability and sustainability worldwide. Many fungal genes involved in pathogenicity and rice genes involved in effector recognition and defense responses have been identified over the past decade. A total of 99 and 22 blast resistance genes have been identified and cloned; in which 45% were found in japonica cultivars, 51% in indica cultivars, and the rest 4% in wild rice species. Among them, three major resistance gene clusters have been characeterized: the Pik locus on Chromosome 11, and the Pita locus on Chromosome 12, the Piz locus on Chromosome 6 closely to the starch synthesis-related genes. These results could be important clues for studying the relationship between resistance / susceptible materials and eating quality.
        4.
        2013.07 서비스 종료(열람 제한)
        Rice (Oryza sativa) is an excellent model monocot with a known genome sequence for studying developmental seeds. In the study, the seeds of 10th day after flowering (DAF) were conducted RNA-Seq of the variety Shindongjin and Sugary mutant using RNA-seq technique. Approximately 202 and 214 million high-quality paired-end reads (101-bp in size) were generated in Shindongjin and Sugary mutant, respectively. Comprehensive analysis on the transcript levels of genes which encode starch-synthesis enzymes is fundamental for the assessment of the function of each enzyme and the regulatory mechanism of starch biosynthesis in seeds. Quantitative real-time PCR was also used to validate the expression profiles of 28 rice genes encoding six classes of enzymes, viz., ADPglucose pyrophosphorylase (AGPase), starch synthase, starch branching enzyme, starch debranching enzyme, starch phosphorylase, and disproportionating enzyme at different developmental grain- filling stages (DAF 1-14) between Shindongjin and Sugary mutant. The results showed that the expression of most of starch synthesis genes were up-regulated except the cytosolic AGPase small subunit2b (AGPS2b), which sharply decreased at grain-filling stages in Sugary mutant. These results will expand our understanding of the complex molecular and cellular events in rice grain-filling stages and provide a fundamental understanding of future studies on developmental endosperm in rice and other cereal crops.
        5.
        2013.07 서비스 종료(열람 제한)
        AGenome-wide association studies (GWAS) have proven a useful technique for identifying genetic loci responsible for natural variation in rice. With the fast developed next-generation sequencing technology, it is possible for people to carry out GWAS by phenotyping different traits. However, how to make full use of huge data, abandon unnecessary data, and solve the problem of data application effectively seems still an obstacle for many researchers. Taking the case of whole-genome resequencing of Korean authentic rice core set, here we present a general technological path of GWAS including: 1) a schematic view of sequencing-based GWAS in rice; 2) a user-friendly and interactive web application for GWAS in rice by the aid of experience from Arabidopsis; 3) Haplotype and association analysis of candidate genes in a certain mechanism pathway, giving 10 starch synthesis genes as example; and 4) functional validation by Trans- and Mata-Omics analysis.
        6.
        2013.07 서비스 종료(열람 제한)
        Amaranths (Amaranthus sp.) are cosmopolitan and include grain, vegetable, ornamental and weed types. Forteen simple sequence repeat (SSR) markers were used to analyze the genetic diversity of 59 accessions of cultivated amaranth from Asian countries. A total of 63 alleles were detected with an average of 4.5 per locus. The averaged values of gene diversity and polymorphism information content (PIC) were 0.35 and 0.33, respectively. Alleles per locus in accessions from South Asia was 4.35, whereas 2.93 and 3.79 alleles per locus were found in Nepal and India, respectively. The mean gene diversity in Central Asia and East Asia was 0.36 and 0.28, respectively, whereas the mean PIC values were 0.27 and 0.22, respectively. The genetic diversity and PIC of the India amaranths were higher than that of other Asian countries. The model-based structure analysis revealed the presence of three subpopulations, which was basically consistent with clustering based on genetic distance. An AMOVA analysis showed that the between-population component of genetic variance was less than 56.16% in contrast to 43.84% for the within-population component. The overall FST value was 0.56, reflecting genetic differentiation within Asian amaranths. These findings could be used for designing effective breeding programs aimed at broadening the genetic bases of commercially grown varieties.