Metals such as stainless steel and alloy 600 are used as structures and materials in nuclear power plants due to their excellent mechanical properties and heat resistance. And recently thermal and mechanical cutting technologies are being actively researched and developed for dismantling NPP. Among them, the mechanical cutting method has the advantage of less secondary waste generation such as fume and fine dust, but according to the wider the cutting range, the reaction force and the cutting device size are increased. In this paper, plasma assisted milling has been proposed to reduce the reaction force and device size, and the plasma efficiency was measured for SUS 316L. The plasma torch was operated at the level of 3 to 4 kW so that it was heated only without cutting. And the feedrate was set at 150 to 250 mm/min. The test confirmed that the plasma efficiency was 35% about SUS 316L, and it is expected that the numerical analysis using these test results can be used as basic data for plasma assisted milling.
Various cutting technologies such as thermal and mechanical are being researched and developed to dismantle shutdown nuclear power plants. Each technology has the following advantages and disadvantages. The thermal cutting method has low reaction force and fast cutting speed, but secondary waste such as fume, dross, and fine dust is generated. The mechanical cutting method has the advantage of low generation of secondary waste such as fume, dross, and fine dust, but has the disadvantage of increasing the size of the device due to its large reaction force. In this study, the performance of plasma milling robot cutting technology for nuclear power plant materials was evaluated. First, before applying plasma auxiliary milling to the robot, tests were conducted on SUS 316 L and Alloy 600 to secure processing conditions such as plasma torch output and transfer speed. The test have shown that the mechanical strength was decreased of each material at the output power of the plasma torch of 4.4 and 8.4 kW, the transfer speed of 200 and 100 mm/min. Based on the test results, a plasma milling was attached to the robot and tested, and it was confirmed that even a small robot with a load of 140 kg can cut without any major problems.
In this work, we report test results for direct melting of non-combustible wastes by using a 100 kW class transferred type plasma torch. For this purpose, non-combustible wastes consisting of metals and sands were prepared, weighed and melted by a transferred arc in a ceramic crucible with inner diameter of 150 mm. Test results reveal that 75wt% M6 iron bolts mixed with 25wt% sands were completely melted down within 140 seconds at the plasma power level of 83.8 kW, producing melting speed of 100 kg/hr and volume reduction rate of 62.8%. In addition, for simulated wastes consisting of 77.3wt% metal chips and 22.7wt% sands, the volume reduction rate high than 88% was achieved at 50 kW plasma power. These results indicate that non-combustible wastes can be treated efficiently when directly melting them by using transferred type plasma torch.
It is important that the plasma torch used in the waste treatment field has a high output to increase throughput. In order to increase the output of the plasma torch, there is a method of increasing the current or extending the length of the plasma arc. Among these methods, high power can be easily achieved simply by increasing current, but it is difficult to ensure electrode life. Therefore, it is necessary to check the appropriate current and arc length conditions to achieve high power and stable operation. In this paper, the power performance according to the arc length, current, and operation mode was confirmed in the transfer mode plasma torch. The test conditions are the distance (arc length) between the plasma torch and the external electrode was set to 5-180 mm, and the current was set to be in the range of 90-460 A. As a result of the test, it was confirmed that the reverse polarity operation had a maximum output of 159 kW depending on the arc length and current, and the positive polarity operation had a maximum output of 138 kW. Through this result, it was confirmed that the arc length had an effect on increasing the output, and that the reverse polarity operation had a longer arc than the positive polarity operation.
In the present work, a three-phase AC arc plasma torch system is proposed to separate inorganic radioactive materials from the organic liquid waste. For this purpose, first, assuming the resistance of arc plasma ranges between 0.1 and 0.2 ohm, we designed a three-phase AC arc plasma power supply with the power level of 20 kW. Then, a three phase arc plasma torch consisting of three carbon rods with the diameter of 20 mm was designed and mounted on a cylindrical combustion chamber with the inner diameter of 150 mm. Detail design and basic performance of the plasma system were presented and discussed for application to the treatment of radioactive slurry wastes.
In this work, we report the basic performance of a 100 kW class mobile plasma melting system consisting of two 24-ft commercial containers, each in charge of the plasma utilities and melting process. In this system, a 100 kW class transferred type plasma torch has been installed together with a crucible having an inner volume of 2,884 cm3. Filling the inner volume of the crucible with the simulated metal waste, such as bolts and nuts, melting tests have been carried out for 5 min by varying plasma input power from 50 kW to 100 kW. By measuring the volume of metal waste before and after melting test, then, the volume reduction rates were estimated and discussed.
We developed a 100 kW Class Transferred Type Plasma Torch applicable for melting of noncombustible metal wastes. By employing reverse polarity discharge structures for hollow electrode plasma torch, a transferred type arc plasma was generated stably with long arc length higher than 10 cm at the arc currents of ~400 A and gas (N2) flow rate of ~50 lpm. High arc currents and high arc voltages caused by the increased arc length could input high power level of ~100 kW to the noncombustible metal wastes, enabling quick melting. In addition, relatively long arc length and low gas flow rates can help reduce the deposition of melted materials on the exit surface of the torch. Thanks to these features, the developed plasma torch is expected to be suitable for small-scaled and portable melting system.
In this work, we introduce a 100 kW class mobile plasma melting system designed for non-combustible radioactive wastes treatment. To ensure mobility, the designed system consists of two 24-ft commercial containers, each in charge of the plasma utilities and melting process. In the container for plasma utilities, a 100 kW class DC power supply is installed together with a chiller and gas supply system whereas the container for melting process has a transferred type arc melter as well as off-gas treatment system consisting of a heat exchanger, filtrations, scrubber and NOx removal system. As a heat source for a transferred type arc melter, we adopted a hollow electrode plasma torch with reverse polarity discharge structure. Detailed design for a 100 kW class mobile plasma melting system will be presented together with the main specifications of the components. In addition, the basic performance data of the melting system is also presented and discussed.