검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 57

        21.
        2012.06 구독 인증기관·개인회원 무료
        An understanding of oocyte gene expression is a necessary for the study of early female gamete development. Recently, oocyte has been used in many techniques such as somatic cell nuclear transfer, intracytoplasmic sperm injection and embryonic stem cell derivation. The purpose of this study was to investigate in the proteomes of pig oocytes and identification of differential proteins between using DIGE technique. In this experiment to overcome of limitation of 2D gel method like a low reproducibility and low sensitivity for proteome analysis of very small quantities, 2D fluorescence difference gel electrophoresis (DIGE), which enables co-detection of up to three samples on the same 2DE gels with CyDyes was used for analysis of oocyte proteins. Proteins within an isoelectric point (pI) range of 3 to 10 and a molecular weight (Mw) range of 20~100 kDa were primarily analyzed in DIGE with 2 replications of each sample. Approximately 1000 spots were detected in 2-D gel. Then, image analysis of DeCyder was performed to detect variations in protein spots between mature oocyte and parthenogenesis embryo. In the comparison of mature oocyte and parthenogenesis embryo, 11 spots were identified to be up-regulated proteins and 2 spots to be down-regulated proteins in parthenogenesis embryo, among which proteins were zona pellucida glycoprotein 4, transferrin receptor, apolipoprotein B, L-3-Hydroxyacyl Coa Dehydrogenase Revisited, cytochrome P450 2C33, similar to Monocarboxylate transporter 2, 2'-5' oligoadenylate synthetase 3, interferon alpha/ beta receptor-1, Chloride channel protein 6, pyruvate carboxylase as well as2'-5' oligoadenylate synthetase 3 using MALDI-TOF-MS. These results suggested that differential proteins were present between mature oocyte and parthenogenesis embryo.
        22.
        2011.10 구독 인증기관·개인회원 무료
        An understanding of oocyte gene expression is a necessary for the study of biological development. Recently, Oocyte has been used in many techniques such as somatic cell nuclear transfer (SCNT), intracytoplasmic sperm injection (ICSI) and embryonic stem cell derivation. However, the molecular mechanism underlying porcine oocyte is still unclear. In this study, we present the description of the porcine oocyte proteome. Proteins within the isoelectric point ranges of 3.0 to 10.0 were analyzed separately using 2‐dimensional electrophoresis (2‐DE). About 450 spots were detected in 2‐ D gel of oocytes, stained with Coomassie blue. Subsequent excision of 227 spots from gels and MALDI‐TOF MS analysis allowed the identification of 85 proteins. Our results indicated the composite profiles of proteins in the porcine oocyte. Tubulin beta chain and meiosis‐specific nuclear structural protein 1 antibody was used to confirm those antibody expression levels in immature, mature and parthenogenetic embryo. Western blot analysis showed that expressions of those proteins increased during mature and parthenogenetic embryo. These protein profiles will make available important guides for the study of oocyte function and assist in functional analysis of the proteins.
        23.
        2011.10 구독 인증기관·개인회원 무료
        5‐aza‐2’‐deoxyctidine (5‐aza‐dC) is DNA methylation inhibitor and Trichostatin A (TSA) is histone deacytlase inhibitor, both of them can alter the level of the epigenetic modification of cells. The objective of this study was to investigate the effects of treatment with 5‐aza‐dC and TSA into fetal fibroblasts on the development of porcine nuclear transfer (NT) embryos. In this study, experiments were performed in order to modify epigenetic status in donor cells and evaluate developmental potential of NT embryos. 5‐ aza‐dC or TSA or combining treatment of TSA and 5‐aza‐dC was treated into growing donor cells for 1 h exposure and development of NT embryos was evaluated. Experiment was performed with 3 groups: control group (donor cells without treatment); TSA group (donor cell treated with 50 nM TSA for 1 h); TSA + 5‐aza‐dC group (donor cells were treated with 50 nM TSA and 5 nM 5‐aza‐dC for 1 h); TSA+1/2(5‐aza‐dC) group (donor cells were treated with 50 nM TSA for 1h and subsequently treated with 2.5 nM 5‐aza‐dC for another 1h). When donor cells were individually treated with 5 nM 5‐aza‐dC or 50 nM TSA for 1h, the blastocyst rate of NT embryos increased significantly compared with control group [18.8% vs 13.4% (5 nM 5‐aza‐dC group vs control group), and 26.2% vs 11.8% (50 nM TSA group vs control group), p<0.05]. However, the blastocyst rate in combining treatment group (50 nM TSA + 5 nM 5‐aza‐dC) did not increase compare with control group (12.3% vs 11.8%, p>0.05). When the donor cell were individually treated with 50nM TSA for 1 h firstly and then treated with 2.5 nM 5‐aza‐dC for another 1h, the blastocyst rate was significantly improved compared with control and TSA group (28% vs 10.2% and 23.7%, p<0.05). The present study suggested that donor cells treated with TSA or low concentration of TSA+5‐azadC in short time exposure may enhance the development of porcine NT embryo.
        24.
        2011.10 구독 인증기관·개인회원 무료
        X‐box binding protein‐1 (XBP‐1) is an important regulator of a subset of genes active during endoplasmic reticulum (ER) stress. In the present study, we analyzed XBP‐1 level and location to explore the effect of ER stress on oocyte maturation and developmental competency of porcine embryos in an in vitro culture system. First, we examined the localization of XBP‐1 at different meiotic stages of porcine oocytes and at early stages of parthenogenetic embryo development. Fluorescence staining showed that expression of functional XBP‐1 was weak in mature oocytes and at the one‐cell, two‐cell, and eight‐cell stages of embryos, but abundant at the GV oocyte, four‐cell, morula, and blastocyst stages. In addition, RT‐PCR revealed that both spliced XBP‐1 (XBP‐1s ) and unspliced XBP‐1 (XBP‐1u) were expressed at the GV oocyte, four‐cell, morula, and blastocyst stages. Tunicamycin (TM), an ER stress inducer, blocked porcine embryonic development at the four‐cell stage, exhibiting the effect on embryonic genome activation. Next, porcine embryos cultured in the presence of tauroursodeoxycholate (TUDCA), an ER stress inhibitor, were studied. Total cell numbers and the extent of the ICM increased (p<0.05), whereas the rate of nuclear apoptosis decreased (p<0.05). Moreover, expression of the anti‐apoptotic gene Bcl‐2 increased whereas expression of the pro‐apoptotic genes Bcl‐xl and p53 decreased. The results indicated that inhibition of ER stress enhanced porcine oocyte maturation and embryonic development by preventing ER stress‐mediated apoptosis in vitro.
        25.
        2011.03 구독 인증기관 무료, 개인회원 유료
        The pig has been considered to serve as an appropriate model of human disease. Therefore, establishment of porcine embryonic stem cell lines is important. The purpose of the present study was to further work in this direction. We produced porcine parthenogenetic embryos, and separately aggregated two of each of two-cell (2×2), four-cell (2×4), and eight-cell (2×8) embryos derived by parthenogenesis. After culture for 4 days, the developmental ability of the aggregates and total blastocyst cell numbers were evaluated. The percentage of blastocysts was significantly higher in both 2×4- and 2×8-aggregated embryos (58.3±1.9% and 37.2±2.8%, respectively) than in the control or 2×2-aggregated embryos (23.6±1.1% and 12.5±2.4%, respectively). Total blastocyst cell numbers were increased in the 2×4- and 2×8-aggregated embryos (by 44±3.0% and 45±3.3%, respectively) compared with those of control or 2×2-aggregated embryos (30.5±2.1% and 30.7±2.6%, respectively; p<0.05). The levels of mRNA encoding Oct-4 were higher in both the 2×4- and 2×8-aggregated embryos than in the control. When blastocysts derived from 2×4- aggregated embryos or intact normal embryos were cultured on mouse embryonic fibroblast feeder cells to obtain porcine stem cells, blastocysts from aggregated embryos formed colonies that were better in shape compared with those derived from intact blastocysts. Together, the data show that aggregation of porcine embryos not only improves blastocyst quality but also serves as an efficient procedure by which porcine embryonic stem cells can become established.
        4,000원
        27.
        2009.12 구독 인증기관 무료, 개인회원 유료
        To examine the differential expression of proteins during the cycling (70~80% confluences) and G0/G1 (full confluences) phases in porcine fetal fibroblast cells, we used a global proteomics approach by 2‐D gel electrophoresis (2‐DE) and MALDI‐TOF‐MS. Cycling cell were harvested at approximately 70% to 80% confluent state while cells in G0/G1 phase were recovered after maintenance of a confluent state for 48 hr. Cellular proteins with isoelectric points ranging between 3.0~10.0, were analyzed by 2‐DE with 2 replicates of each sample. A total of approximately 700 spots were detected by 2‐D gels stained with Coomassie brilliant blue. On comparing the cell samples obtained from the cycling and G0/G1 phases, a total of 13 spots were identified as differentially expressed proteins, of which 8 spots were up‐regulated in the cycling cell and 5 were up‐regulated in the G0/G1 phase. Differentially expressed proteins included K3 keratin, similar to serine protease 23 precursor, protein disulfide‐isomerase A3, microsomal protease ER‐60, alpha‐actinin‐2, and heat‐shock protein 90 beta. The identified proteins were grouped on the basis of their basic functions such as molecular binding, catabolic, cell growth, and transcription regulatory proteins. Our results show expression profiles of key proteins in porcine fetal fibroblast cells during different cell cycle status.
        4,000원
        28.
        2009.12 구독 인증기관 무료, 개인회원 유료
        Pregnancy is a unique event in which a fetus develops in the uterus despite being genetically and immunologically different from the mother, and the underlying mechanisms remain poorly understood. To analyze the differential gene expression profiles in nonpregnant and 7 days post coitus (dpc) pregnant uterus of mice, we performed a global proteomic study by 2‐D gel electrophoresis (2‐DE) and MALDI‐TOF‐MS. The uterine proteins were separated using 2‐DE. Approximately 1,000 spots were detected on staining with Coomassie brilliant blue. An image analysis using Melanie III (Swiss Institute for Bioinformatics) was performed to detect variations in protein spots between pregnant and nonpregnant uterus. Twenty‐one spots were identified as differentially expressed proteins, of which 10 were up‐regulated proteins such as alpha‐fetoprotein, chloride intracellular channel 1, transgelin, heat‐shock protein beta‐1, and carbonic anhydrase II, while 11 were down‐regulated proteins such as X‐box binding protein, glutathione S‐transferase omega 1, olfactory receptor Olfr204, and metalloproteinase‐disintegrin domain containing protein TECADAM. Most of the identified proteins appeared to be related with catabolism, cell growth, metabolism, regulation, cell protection, protein repair, or protection. Our results uncovered key proteins of mouse uterus involved in pregnancy.
        4,000원
        31.
        2009.05 구독 인증기관·개인회원 무료
        Background: Proteolytic enzymes are involved in insect molting and metamorphosis and play a vital role in the programmed cell death of obsolete organs. Here we show the expression profile of cathepsin B in the fat body of the silkworm Bombyx mori during development. We also compared the expression profile of B. mori cathepsins B (BmCatB) and D (BmCatD) in the fat body during the larval-pupal transformation of B. mori in the BmCatB or BmCatD RNA interference (RNAi) process. Results: BmCatB is ecdysone-induced and expressed in the fat body of B. mori during the molting, and the larval-pupal and pupal-adult transformations, and its expression leads to programmed cell death. In particular, BmCatB is highly expressed in the fat body of B. mori during the larval-pupal transformation and BmCatB RNAi treatment resulted in the arrest of the larval-pupal transformation. RNAi-treated BmCatB knock-down sustained the expression of BmCatD during the larval-pupal transformation. On the other hand, BmCatD RNAi up-regulated the expression of BmCatB in the fat body of final instar larvae. Conclusion: Based on these results, we conclude that BmCatB is involved in the programmed cell death of the fat body during B. mori metamorphosis and that BmCatB and BmCatD contribute collaboratively to B. mori metamorphosis
        32.
        2008.12 구독 인증기관 무료, 개인회원 유료
        The early diagnosis of bovine pregnancy is an essential component of successful reproductive planning on farms, because lack of bovine pregnancy over the long term results in reproductive failure and low milk yield‐the latter of which is a special concern on dairy farms. This study was designed to identify early pregnancy‐specific whey proteins in bovine, by comparing milk samples collected from cattle during pregnancy (Days 30 and 50) and from non‐pregnant cattle. In this study, differentially expressed proteins in five pregnant and five non‐pregnant Holstein dairy cattle were investigated and compared, using proteomics analysis. The first dimension was applied to a pH 3.0~10.0 strip, by loading a 2‐mg milk protein sample. After the second‐dimension separation was performed, the gels were stained with colloidal Coomassie brilliant blue. The stained gels were scanned and the images were analyzed, to detect variations in protein spots between non‐pregnant and pregnant cattle milk protein spots, using ImageMaster; this was followed by analysis with MALDI TOF‐MS. Analysis of the 2‐DE gel image resulted in a total of approximately 500~600 protein spots, of which 12 spots were differentially expressed, six spots were up‐regulated, and four spots were downregulated; two spots were identified as pregnancy‐specific proteins. These proteins were identified as lactoferrin, NADH dehydrogenase subunit 2, albumin, serum albumin precursor and transferrin. Our results via 2‐D PAGE analysis revealed composite profiles of several milk proteins related to early bovine pregnancy, implying the possible use of these milk proteins in the early detection of bovine pregnancy.
        4,000원
        33.
        2008.12 구독 인증기관 무료, 개인회원 유료
        Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro‐matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM‐199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1 kV/cm for 30 μs in 0.3 M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium‐3 (PZM‐3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM‐3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine‐porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat‐porcine and porcine‐bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.
        4,000원
        1 2 3