검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The expansion of online retail markets has driven the development of personalized product recommendation services leveraging platform-based product and customer data. Large retailers have implemented seller-oriented recommendation systems, where AI analyzes POS sales data to identify similar stores and recommend products not yet introduced but successful elsewhere. However, small and medium-sized retailers face challenges in adapting to rapidly evolving online market trends due to limited resources. This study proposes a recommendation algorithm tailored for small-scale retailers using sales data from an online shopping mall. We analyzed 600,000 transaction records from 13,607 sellers and 95,938 products, focusing on Beauty Supplies, Kitchenware, and Cleaning Supplies categories. Three algorithms—Attentional Factorization Machines (AFM), Deep Factorization Machines (DeepFM), and Neural Collaborative Filtering (NCF)—were applied to recommend top 10% weekly sales items, with an ensemble model integrating their strengths. To address class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was employed, and performance was evaluated using AUC, Accuracy, Precision, and Recall metrics on separate training and test datasets. The ensemble model outperformed individual models across all metrics, while DeepFM excelled in Precision. These findings demonstrate that ensemble-based recommendation algorithms enhance recommendation accuracy for suppliers in large-scale online retail environments, offering practical implications for small-scale retailers.
        4,000원
        2.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to COVID-19, changes in consumption trends are taking place in the distribution sector, such as an increase in non-face-to-face consumption and a rapid growth in the online shopping market. However, it is difficult for small and medium-sized export sellers to obtain forecast information on the export market by country, compared to large distributors who can easily build a global sales network. This study is about the prediction of export amount and export volume by country and item for market information analysis of small and medium export sellers. A prediction model was developed using Lasso, XGBoost, and MLP models based on supervised learning and deep learning, and export trends for clothing, cosmetics, and household electronic devices were predicted for Korea's major export countries, the United States, China, and Vietnam. As a result of the prediction, the performance of MAE and RMSE for the Lasso model was excellent, and based on the development results, a market analysis system for small and medium sellers was developed.
        4,000원