Bio-imaging and drug carriers for delivery have created a huge demand for crystals. Crystals are fascinating materials that have been grown for a long time but obtaining biocompatible fluorescent crystals is a challenging task. We report on the growth of fluorescent crystals using a carbon dot (C-dot) solution by a hydrothermal process. The crystallization pattern of these C-dots exhibited a unique dendritic structure having a feather-like morphology. The growth temperature and pressure were maintained at 60°C and 200 mmHg, respectively, for crystal growth. A green fluorescence (under UV light) that was observed in the C-dot solution was retained in the crystals formed from the solution. Cytotoxicity studies on Vero cells revealed the crystals to be extremely biocompatible. These fluorescent crystals are extremely well suited for biomedical and optoelectronic applications.
This research examines the influence of network position, identity construction and role playing within business to business (B2B) interactions processes. The framework used as the basis for considering interaction processes developed from the AAR model (Håkansson & Snehota, 1995) and includes: accessing resources; developing actor bonds and conducting activities. There has been little research conducted into network position (Abrahamsen et al., 2012; Schepis et al., 2014); identity construction (Huemer, 2013; Schepis et al., 2014) and role playing (Abrahamsen et al., 2012; Lowe et al., 2012). This research develops a framework for incorporating all three concepts into the interaction process, rather than investigating them individually or paired, commonly undertaken in previous research. The research is conducted within an interpretive paradigm with 20 interviews conducted within the junior mining industry in Western Australia. Interviews were analysed using Leximancer™ and a comparison of the perceptions from companies playing different roles within the network examined. Results highlight that network position is influenced through accessing resources and developing actor bonds; identity construction occurs through developing actor bonds and conducting activities and role playing occurs when conducting activities and accessing resources. A theoretical framework highlights each of the above concepts within the framework of interaction processes. The value of this paper is that the each of these concepts is influenced through different aspects of the interaction process. Thus, highlighting which aspects of the interactions processes managers can adapt to improve their network position, identity construction and role perceptions.
The synthesis of carbon nanomaterials (CNMs) by a chemical vapor deposition method using three different plant oils as precursors is presented. Because there are four param-eters involved in the synthesis of CNM (i.e., the precursor, reaction temperature of the furnace, catalysts, and the carrier gas), each having three variables, it was decided to use the Taguchi optimization method with the ‘the larger the better’ concept. The best parameter regarding the yield of carbon varied for each type of precursor oil. It was a temperature of 900°C + Ni as a catalyst for neem oil; 700°C + Co for karanja oil and 500°C + Zn as a catalyst for castor oil. The morphology of the nanocarbon produced was also impacted by different parameters. Neem oil and castor oil produced carbon nanotube (CNT) at 900°C; at lower temperatures, sphere-like structures developed. In contrast, karanja oil produced CNTs at all the assessed temperatures. X-ray diffraction and Raman diffraction analyses confirmedthat the nanocarbon (both carbon nano beads and CNTs) produced were graphitic in nature.
Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an sp3 carbon contribution, and having pore sizes around 10μm favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.
Porous carbon materials synthesized from various plant derived precursors i.e. seeds of [Castor (Ricinus communis), Soap nut (Sapindus sp.), Cashew-nut (Semecarpus anacardium), Jack fruit (Artocarpus heterophyllus), Safflower (Carthamus tinctorius), Ambadi (Crotolaria juncea), Neem (Azadirachta indica), Bitter Almond (Prunus amygdalus), Sesamum (Sisamum indicum), Date-palm (Phoenix dactylifera),Canola (Brassica napus), Sunflower (Helianthus annulus)] and fibrous materials from [Corn stem- (Zea mays), Rice straw (Oryza sativa), Bamboo (Bombax bambusa) and Coconut fibers (Cocos nucifera)] were screened to make supercapacitor in 5M KOH solution. Carbon material obtained from Jack fruit seeds (92.0 F/g), Rice straw (83.0 F/g), Soap nut seeds (54.0 F/g), Castor seeds (44.34 F/g) and Bamboo (40.0 F/g) gave high capacitance value as compared to others. The magnitude of capacitance value was found to be inversely proportional to the scan rate of measurement. It is suggested that carbon material should possess large surface area and small pore size to get better value of capacitor. Moreover, the structure of carbon materials should be such that majority of pores are in the plane parallel to the plane of electrode and surface is fluffy like cotton ball.
Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in μm) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after 100th cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.
Thin films of carbon-nano materials (CNMs) of different morphology have been successfully deposited on ceramic substrate by CVD at temperatures 800℃, 850℃ and 900℃ using plant based oils in the presence of transition metal catalysts (Ni, Co and Ni/Co alloys). Based on the return and insertion loss, microwave absorption properties of thin film of nanocarbon material are measured using passive micro-Strip line components. The result indicates that amongst CNMs synthesized from oil of natural precursors (mustered oil - Brassica napus, Karanja oil - Pongamia glabra, Cotton oil - Gossipium hirsuta and Neem oil - Azadirachta indica) carbon nano fibers obtained from neem's seed oil showed better microwave absorption (~20dB) in the range of 8.0 GHz to 17.90 GHz.
The suitable tools for CGI material has not been developed yet because of high hardness, high toughness and very low machininability compared to the grey cast iron. And the tool life has been decreased as the contents of Ti in CGI material. From this research, we were able to do the high speed machining by using high toughness silicon nitride ceramic tools. The silicon nitride ceramic tool grade was specially designed and prepared with microstructure of elongated grains with higher aspect ratio (c/a) than conventional one.
Taguchi methodology has been applied to get an idea about the parameters related to the chemical vapour deposition technique, which influences the formation of semiconducting carbon thin film of a desired band gap. L9 orthogonal array was used for this purpose. The analysis based on Taguchi methodology suggests that amongst the parameters selected, the temperature of pyrolysis significantly controls the magnitude of band gap (46%). Sintering time has a small influence (30%) on the band gap formation and other factors have almost no influence on the band gap formation. Moreover this analysis suggests that lower temperature of pyrolysis (≤ 750℃) and lower time of sintering (≤ 1 h) should be preferred to get carbon thin film with the desired band gap of 1.2eV.
Gangliocytomas are non-metastasizing and slow-growing tumor. In the sellar region, the sympathetic nerve fibers normally do not exist. Therefore, isolated gangliocytomas had been rarely reported in the pituitary fossa. Herein, we present and review the gangliocytoma arising in sellar region associating with pituitary adenoma which is the most common tumor in pituitary gland.
Cellular angiofibroma is a benign mesenchymal tumor with uniform, bland, spindle cell differentiation accompanied by thick walled vessels. We report a 17-year-old male who was diagnosed cellular angiofibroma on his right spermatic cord. He had small (about 1cm sized), non-tender, painless, movable mass for 3 years but 1 year ago insidious size of mass increased. Histological finding showed features characteristic of cellular angiofibroma however that occurs almost exclusively in vulvar of middle aged women. In addition, benign mesenchymal neoplasms had similar histologic findings with angiofibroma, especially aggressive angiofibroblastoma, aggressive angiomyxoma and solitary fibrous tumor. Specific immunohistochemical stain profile of angiofibroma helpful of differential diagnosis. Local excision with clear resection margin and long-term follow up are the treatment of choice as local recurrence has been reported in a few case.
Malignant mixed tumor is an aggressive malignant neoplasm composed of heterologous malignant epithelial and stromal components. It is a rare neoplasm, accounting for 0.05 % of all salivary gland tumors and 0.16 % of all malignant salivary gland tumors. The tumor may occur in the background of a preexisting pleomorphic adenoma or may arise de novo. We report on an 84-year-old female who was diagnosed with carcinosarcoma on her left parotid gland. Microscopically, the tumor consisted of two components - mainly myxoid chondrosarcoma (75%), poorly differentiated carcinoma and a few remnants of benign pleomorphic adenoma in the periphery of the tumor.