검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 돼지 간 거리(PD), 돈사 내 상대 습도(RRH), 돈사 내 이산화탄소(RCO2) 세 가지 변수를 사용하여, 네 개의 데이터 세트를 구성하고, 이를 다중 선형 회귀(MLR), 서포트 벡터 회귀(SVR) 및 랜덤 포레스트 회귀(RFR) 세 가지 모델 기계학습(ML)에 적용하여, 돈사 내 온도(RT)를 예측하고자 한다. 2022년 10월 5일부터 11월 19일까지 실험을 진행하였다. Hik-vision 2D카메라를 사용하여, 돈사 내 영상을 기록하였다. 이후 ArcMap 프로그램을 사용하여, 돈사 내 영상에서 추출한 이미지 안 돼지의 PD를 계산하였다. 축산환경관리시스템(LEMS) 센서를 사용하여, RT, RRH 및 RCO2를 측정하였다. 연구 결과 각 변수 간 상관분석 시 RT와 PD 간의 강한 양의 상관관계가 나타났다(r > 0.75). 네 가지 데이터 세트 중 데이터 세트 3을 사용한 ML 모델이 높은 정확도가 나타났으며, 세 가지 회귀 모델 중에서 RFR 모델이 가장 우수한 성능을 보였다.
        4,000원
        2.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 채소정식을 위한 정식기에 사용하는 생분해성 포트를 개발하기 위하여 생분해성 첨가제의 비율에 따라 포트의 물성 및 식물의 생장 차이를 구명하였다. 본 실험에 사용된 생분해포트의 주원료는 크라프트지와 신문고지였고, 생분해성 포트는 주 배합비에서 내첨첨가제의 함량을 주원료 대비 각 3%, 5%로 제조하였다. 본 실험에서 8주 육묘 후 포트의 물리적 특성과 첨가제에 따른 변화를 알아보기 위해 포트의 인장강도, 두께, 무게 등을 조사하였다. 생분해성 첨가제가 함유된 포트와 일반 PE포트에 식물 생장도 비교하였다. 2주차에서 5주차에는 매주 배추의 생육조사를 진행했고, 5주차에서 8주차에는 고추생육조사를 진행하였다. 식물의 생장은 뿌리신선중(g), 지상부 시선중(g), 옆 장(cm), 옆 폭(cm)등을 측정하였다. 생분해성 포트에서의 식물 생장은 플라스틱 포트에 비해 생육이 저조하게 나타났다. 생분해성 포트의 무게와 두께는 첨가제 함량에 따라 낮은 상관성을 보였지만, 인장강도의 경우 차이를 보여 내첨제의 비율에 따라 생육에 영향을 미치는 것으로 나타났다. 그러나 첨가제는 무게와 두께에는 영향을 미치지 않아 포트의 생분해 능력에는 영향이 없는 것으로 판단된다. 본 연구는 생분해성 식물 포트 개발의 기초자료가 될 것으로 기대된다.
        4,000원
        3.
        2022.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Strawberry is a stand-out cultivating fruit in Korea. The optimum production of strawberry is highly dependent on growing environment. Smart farm technology, and automatic monitoring and control system maintain a favorable environment for strawberry growth in greenhouses, as well as play an important role to improve production. Moreover, physiological parameters of strawberry plant and it is surrounding environment may allow to give an idea on production of strawberry. Therefore, this study intends to build a machine learning model to predict strawberry’s yield, cultivated in greenhouse. The environmental parameter like as temperature, humidity and CO2 and physiological parameters such as length of leaves, number of flowers and fruits and chlorophyll content of ‘Seolhyang’ (widely growing strawberry cultivar in Korea) were collected from three strawberry greenhouses located in Sacheon of Gyeongsangnam-do during the period of 2019-2020. A predictive model, Lasso regression was designed and validated through 5-fold cross-validation. The current study found that performance of the Lasso regression model is good to predict the number of flowers and fruits, when the MAPE value are 0.511 and 0.488, respectively during the model validation. Overall, the present study demonstrates that using AI based regression model may be convenient for farms and agricultural companies to predict yield of crops with fewer input attributes.
        4,000원
        4.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The important thing in the field of deep learning is to find out the appropriate hyper-parameter for image classification. In this study, the main objective is to investigate the performance of various hyper-parameters in a convolutional neural network model based on the image classification problem. The dataset was obtained from the Kaggle dataset. The experiment was conducted through different hyper-parameters. For this proposal, Stochastic Gradient Descent without momentum (SGD), Adaptive Moment Estimation (Adam), Adagrad, Adamax optimizer, and the number of batch sizes (16, 32, 64, 120), and the number of epochs (50, 100, 150) were considered as hyper-parameters to determine the losses and accuracy of a model. In addition, Binary Cross-entropy Loss Function (BCLF) was used for evaluating the performance of a model. In this study, the VGG16 convolutional neural network was used for image classification. Empirical results demonstrated that a model had minimum losses obtain by Adagrad optimizer in the case of 16 batch sizes and 50 epochs. In addition, the SGD with a 32 batch sizes and 150 epochs and the Adam with a 64 batch sizes and 50 epochs had the best performance based on the loss value during the training process. Interestingly, the accuracy was higher while performing the Adagrad and Adamax optimizer with a 120 batch sizes and 150 epochs. In this study, the Adagrad optimizer with a 120 batch sizes and 150 epochs performed slightly better among those optimizers. In addition, an increasing number of epochs can improve the performance of accuracy. It can help to create a broader scope for further experiments on several datasets to perceive the suitable hyper-parameters for the convolutional neural network. Dataset: https://www.kaggle.com/c/dogs-vs-cats/data
        4,000원
        5.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 온실의 온도와 CO2농도를 높이기 위해 DME버너용 연료로 DME가스를 사용했을 때 DME 연소가스의 성능을 결정하고 겨울에 상추와 양배추의 엽록소 함량 그리고 무게와 건조무게에 대한 영향정도를 조사하기 위해 수행되었다. 각각 온실1과 온실2에 처방 된 DME-1과 DME-2 처방은 덕트의 평균 DME 유량 17.4 m3 min-1과10.2 m3 min-1으로 구성됐으며, 대조군(DME-3)으로 남겨진 온실3에는 DME 가스가 공급되지 않 았다. DME 공급 시간은 각각 주차 별로 1주차는 하루당 0.5시간, 2주차는 1시간, 3주차는 1.5시간, 4주차는 2 시간으로 설정하였다. 각각 처방마다 엽록소 함량과 상추와 배추의 건조 전, 후 중량을 측정했으며, 연구결과 무처리구인 온실3과 비교하여 온실1과 온실2 의 CO2 농도는 각각 265%, 174% 증가하였고, 온도의 경우 4.8oC, 3.10oC 상승하였다. DME 가스를 제외한 다른 조건이 같은 온실에서 재배된 상추와 양배추의 엽록소 함량과 생체중, 건물중은 온실1에서 (유의적으로) 가장 높았으며, 온실2는 대조구 온실보다 높았다. 이러한 결과는 DME가스 연소에 의한 CO2 농도 차이에 기인된 것으로 판단된다. 일반적으로 가스연소에 의해 발생되는 유해가스 증상은 나타나지 않았으며 동절기 난방과 CO2 공급이 동시에 필요할 경우 DME가스가 기존의 경유 또는 LPG 등을 대체할 수 있는 가능성을 확인하였다. 향후 정밀한 연구를 통하여 효율적인 난방방식으로의 검토가 적극 필요하다고 판단된다.
        4,000원