검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Conductive polymer composites with high electrical and mechanical properties are in demand for bipolar plates of phosphoric acid fuel cells (PAFC). In this study, composites based on natural graphite/fluorinated ethylene propylene (FEP) and different ratios of carbon black are mixed and hot formed into bars. The overall content of natural graphite is replaced by carbon black (0.2 wt% to 3.0 wt%). It is found that the addition of carbon black reduces electrical resistivity and density. The density of composite materials added with carbon black 3.0 wt% is 2.168 g/cm3, which is 0.017 g/cm3 less than that of non-additive composites. In-plane electrical resistivity is 7.68 μΩm and through-plane electrical resistivity is 27.66 μΩm. Compared with non-additive composites, in-plane electrical resistivity decreases by 95.7 % and through-plane decreases by 95.9 %. Also, the bending strength is about 30 % improved when carbon black is added at 2.0 wt% compared to non-additive cases. The decrease of electrical resistivity of composites is estimated to stem from the carbon black, which is a conductive material located between melted FEP and acts a path for electrons; the increasing mechanical properties are estimated to result from carbon black filling up pores in the composites.
        4,200원
        2.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study examined changes in surface shape and pore size observed in carbon black particles isothermally oxidized in an air atmosphere according to their burn-off ratio. Carbon black materials were fed into a horizontal tubular furnace in an air atmosphere when the inside temperature reached 600 °C. Subsequently, while changing the isothermal oxidation time, carbon black samples with different burn-off ratios were obtained, i.e., 10.5, 20.0, 30.4, 41.0, 49.9, 59.8, 71.1, and 81.0%. The scanning electron microscope analysis revealed that the observed carbon black particles were in the form of aggregated primary particles, and that there was no change in the particle size of these primary particles as the burn-off process proceeded. The latter observation supported the observation that pores were formed in the carbon black samples during the burn-off process. Notably, the Brunauer–Emmett–Teller analysis exhibited hysteresis curves, indicating that the corresponding adsorption isotherms were of IV-type. It was also found that the area of the hysteresis curves increased as the burn-off process proceeded. The specific surface area of the raw carbon black sample was 58.00 m2/g, while that of the 81.0% sample was about 4.1 times the figure at 240.27 m2/g. The total pore volume VT was 0.17 cm3/g for the raw sample, and it was much higher for the 81.0% sample at 0.58 cm3/g. The transmission electron microscope analysis showed that the raw carbon black particles had a spherical shape with a smooth surface, but inner pores were not observed. In the 49.9% sample, pores with a size of about 5 nm were observed inside carbon black particles. Notably, the size of the pores observed in the 81.0% sample was about 20 nm and the large pores were created by the collapsing and merging of the smaller pores by oxidation.
        4,200원