Under the circumstance of energy transition policy of the previous government in which nuclear energy portion will be gradually reduced, some R&D study looking for alternatives other than Pyro- SFR recycling could be very valuable and timely suitable. New alternative study started to evaluate the possibility of it if there are some advantages in terms of waste burden in case that the spent fuel are appropriately treated and disposed of in a disposal site, instead of recycling of spent nuclear fuels (SNF). The alternative study separate the fission products (minor actinides and rare earths) from SNF in a molten salt medium. The molten salt coming from the alternative study is radioactive and heat generating because it contains the fission products chlorides. It is necessary to collect the fission products from the waste molten salt for minimization of the high-level waste volume and to generate a final waste form containing the fission products compatible to the disposal site. Based on the results of a review for various precipitation methods, phosphorylation (phosphate precipitation) of metal chlorides selected as a proper treatment method for recovering of the fission products in a molten salt. Phosphate precipitation has the potential for removing most of fission product elements from a molten salt arising from the treatment of spent nuclear fuel. The performance of phosphate precipitation method evaluated using a salt mixture with the actinide and rare earth chlorides. The molten salt containing uranium as surrogate of the actinides and three rare earths (Nd, Ce, La) chloride was used for testing a phosphate precipitation method at experimental condition (temperature 500°C, salt stirring 200~300 rpm, and 1~1.2 eq. of phosphorylation agent). A cyclic voltammetry (CV) method monitored in-situ phosphate precipitation progress for determining the precipitation rate and conversion ratio evaluated. The phosphorylation reaction increased greatly at a salt stirring 300 rpm.
독수리 11개체에 GPS를 부착하여 비행특성을 분석하였다. 한국에 월동기간은 평균 131일 (SD=17.4)이었고, 평균 비상 비율은 19.6%이었다. 비행고도는 100 m 이하가 21.6%이었으며, 101~200 m는 25.3%, 201~300 m는 19.0% 로, 300 m 이하가 65.9%이었다. 시간대별 비상률과 고도는 양의 상관관계 (r=0.929)를 보였고, 월별 비행고도 비율은 대부분 101~200 m에 가장 많은 비율을 나타냈다 (p<0.05). 월동기 독수리는 비행비율을 낮추고 300 m 이하 고도에서 비행하였다. 독수리의 넓은 행동권, 높은 비 행비율, 높은 고도 비행특성은 사회적 상호작용에 의해 먹이를 찾는 효율적인 비행방법으로 판단된다.
본 연구는 한국 서해안 무인도에서 번식하는 노랑부리백로의 주요 번식지에서 번식지 환경에 따른 둥지 특성의 차이점을 파악하고 비교 분석하여, 향후 이들의 자연번식지에 둥지 터 조성 및 관리방안을 마련하는 데 필요한 기초자료 를 제공하기 위하여 수행되었다. 연구는 2013년 6월과 7월에 번식지환경이 서로 유사한 서만도(11개 둥지)와 황서도(14 개 둥지), 목도(10개 둥지)와 납대기섬(15개 둥지)의 4개 섬에서, 산란된 알이 있는 총 50개의 둥지를 대상으로 하였다. 연구결과 4개 번식 집단의 둥지 특성은 황서도의 은폐도가 가장 높았고, 둥지 높이는 목도가 가장 높았으며, 재사용 기간은 납대기섬, 둥지 깊이는 목도가 가장 깊었다. 유사한 번식환경인 이대 군락에서 번식하는 목도와 납대기섬의 두 번식 집단 간의 둥지 특성은 높이와 재사용 기간의 2개 항목에서 유의한 차이가 있었다. 또한 찔레꽃 군락에서 번식하는 서만도와 황서도의 두 번식 집단 간의 둥지 특성은 재사용 기간, 둥지 깊이의 2개 항목에서 유의한 차이를 나타내었다. 이대 군락에서 번식하는 집단(목도, 납대기섬)과 찔레꽃 군락에서 번식하는 집단(서만도, 황서도) 간의 둥지 특성을 분석한 결과 은폐도, 둥지 단경, 둥지 깊이의 3개 항목에서 유의한 차이를 나타내었다. 결과적으로 한국에서 번식하는 노랑부리백로의 경우 유사한 번식지 환경에서도 일부 둥지 특성에서 차이가 나타났으며, 이대 군락과 찔레꽃 군락의 서로 다른 번식지 환경에서는 은폐도, 둥지 단경, 둥지 깊이의 3개 항목에서 차이가 나타났다. 따라서 향 후 노랑부리백로의 자연번식지에 둥지 터를 조성하거나 번식지 관리방안 수립 시 은폐도, 둥지 터 식물의 수종 등을 고려하여 조성하는 방안이 필요하였다.
전해환원공정의 금속전환체로부터 우라늄을 회수하는 전해정련공정의 수율을 높이기 위해 고수율 전해정련장치가 개발되 었다. 전해정련장치의 수율을 증대시키기 위해서는 고체음극에 전착되는 우라늄 덴드라이트를 음극 표면으로부터 효율적 으로 회수할 수 있어야 한다. 철강 재료의 음극을 고체음극으로 사용하면, 우라늄 덴드라이트가 전착되어 쉽게 떨어지고 않 고 고착 되어 점착계수(sticking coefficient)가 높아진다. 본 연구에서는 효율적으로 고체음극의 점착계수를 낮출 수 있는 진 동 탈리법을 개발하였고 이를 적용하였다. 고체음극에 진동을 가함으로써 고체 표면에서 우라늄 전착물이 흑연음극의 자발 특성과 유사하게 효율적으로 탈리됨을 확인하였다. 이러한 진동모드에 의한 고체음극에서의 전착물의 탈리 특성을, 고수율 전해정련장치 개념으로 개발한 흑연음극의 자발탈리 특성과 비교 검토하였다. 그리고 우라늄 덴드라이트의 진동 탈리에 대 한 인가전류밀도와 진동 스트로크에 의한 영향 등을 고찰하였다.
산화물 사용후핵연료에 대한 전해환원의 금속전환체를 양극으로 한 전해정련공정에는 LiCl-KCl 공융염에 우라늄 원소뿐 아 니라 초우란 원소 및 희토류 원소들이 용해되므로 우라늄을 선택적으로 회수하기 위해서는 우라늄과 다른 원소들이 음극에 전착되는 거동에 대한 연구가 필요하다. LiCl-KCl 공융염 내 희토류 원소의 농도에 따른 음극에서의 전착거동을 고찰하기 위 해 U 및 Ce를 기준으로 한 U, Ce, Y 그리고 Nd 원소들의 분리계수에 대한 연구를 수행하였다. Ce 금속을 희생 양극으로 이용 하여 정전류 정련반응을 통해 용융염 상과 전착물 상의 U, Ce, Y 그리고 Nd 원소의 농도를 분석하여 이로부터 분리계수를 얻 었으며 UCl3 농도와 CeCl3/UCl3 농도비에 따른 분리계수로부터 우라늄을 선택적으로 회수할 수 있는 조건들을 고찰하였다.
상용원자로에서 발생하는 산화물 사용후핵연료의 부피감용과 재활용을 위하여 산화물을 금속으로 환원시 키는 공정에 대한 연구가 수행되어 왔다. 다양한 환원법 중에서, 한국원자력연구원은 LiCl-Li2O 용융염을 반 응매질로 사용하는 전해환원공정을 현재 개발 중이다. 파이로 공정의 전단부에 해당하는 전해환원 공정은 PWR 산화물 연료 주기를 소듐냉각 고속로의 금속연료 주기에 연결시켜 준다. 이 논문은 금속전환 공정을 개 발/개선하고, 용량 증대를 수행한 한국원자력연구원의 노력을 요약한다.
전해정련공정을 통해 생산된 우라늄 전착물은 약 30%의 용융염을 포함하고 있으므로, 순수한 우라늄을 회 수하여 금속 잉곳으로 용이하게 제조하기 위해서는 용융염을 먼저 제거하는 공정이 필요하다. 우라늄 전착물의 염증류 거동을 고찰하기 위해서는 염증류의 주요 공정변수인 유지온도와 진공압의 염제거율에 대한 영 향를 고찰해야 한다. 이전 연구에서 우라늄전착물에 대한 염증류 거동에 대해 Hertz-Langmuir 관계식을 적 용하여 각 용융염의 휘발 조건에 대해 염휘발계수를 얻을 수 있었으며 이로부터 우라늄 전착물에 대해 99% 이상의 염제거율을 나타내는 염증류공정의 조업조건을 도출하였다[1]. 한편, 염증류 장치에서 사용되는 재질 인 스테인리스강에 대해 우라늄 전착물에서 염휘발된 우라늄 금속이 스테인리스강의 주성분인 철, 니켈, 크 롬 등과 공정(eutectic melt)을 형성하지 않는 온도에서 염증류공정을 수행해야 하는 제한 조건이 따른다. 이 번 연구에서는 우라늄 금속과 스테인리스강과의 반응성을 검토함으로써 우라늄 전착물의 염을 99% 이상 제 거할 수 있는 조건을 확인하였다. 그리고 염증류 속도를 증진시키며 휘발된 염을 더 효율적으로 회수하기 위 해 공급되는 알곤 흐름에 의한 염증류 장치의 열해석을 수행함으로써 알곤 흐름에 의한 우라늄 전착물에 대 한 염증류 거동을 고찰하였다.
고온 용융염 전해환원 공정은 후행핵연료 주기의 대안 공정인 파이로공정의 산화물 사용후핵연료의 확대 를 위해 필수적인 공정이다. 사용후핵연료는 다성분 산화물로 이루어져 있으며 각 산화물은 전해환원 공정 에서 화학적 특성에 따라 산소를 잃게 된다. 본 연구에서는 건식분말화 공정 이후 전해환원 반응기에 도입되 는 사용후핵연료 조성을 기준으로 각 금속-산소 시스템을 독립적인 이상고용체로 가정하여 전해환원 반응거동을 계산하였다. 전해환원을 Li의 환원과 이어지는 Li과의 화학반응의 결합으로 산정하여 U을 비롯한 금 속 환원 거동을 계산하였다. 계산결과 대부분의 산화물들은 전해환원 공정에 의해 금속으로 전환되는 것으 로 예상되었다. 란타나이드 원소들의 경우 Li2O의 농도가 낮아지면 금속 전환율이 높아지나 대부분 산화물로 존재하는 것으로 나타났다. 추가적으로 U3O8의 전해환원 거동에 대해 Li의 확산과 Li과의 화학반응을 고려하 여 반실험적 모델이 제시되었다. 실험데이터를 활용하여 매개변수를 결정하였으며 시간에 대한 환원율 및 전류에 대한 99.9% 환원 시간을 계산하였다.