검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this work is to study the feasibility of the preparation of the activated carbon (AC) from coconut tree flowers using high temperature fluidized bed reactor (HTFBR). The activating agent used in this work is steam. The reactor was operated at various activation temperature (650, 700, 750, 800 and 850℃) and activation time (30, 60, 120 and 240 min) for the production of AC from coconut tree flowers. Effect of activation time and activation temperature on the quality of the AC preparation was observed. Prepared AC was characterized in-terms of iodine number, methylene blue number, methyl violet number, ethylene glycol mono ethyl ether (EGME) surface area and SEM photographs. The best quality of AC from coconut tree flowers (CFC) was obtained at an activation temperature and time of 850℃ and 1 hr restectively. The effectiveness of carbon prepared from coconut tree flowers in adsorbing crystal violet from aqueous solution has been studied as a function of agitation time, carbon dosage, and pH. The adsorption of crystal violet onto AC followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity qm was 277.78 mg/g., equilibrium time was found to be 180 min. This adsorbent from coconut tree flowers was found to be effective for the removal of CV dye.
        4,000원
        2.
        2006.09 구독 인증기관·개인회원 무료
        The removal of oxygen during sintering by carbothermic reduction was studied for steel compacts Fe-Cr-Mo-C and Fe-Mo-C prepared from prealloyed powders. The compacts were prepared by pressing at 600 and 1000 MPa and sintering at 1100 and 1300°C in vacuum. It showed that for the Cr-Mo steel, deoxidation strongly depends on the sintering temperature, in contrast to the plain Mo steel; at 1300°C very low oxygen levels were measured with the standard density compact while at high density still significant oxygen is contained. This indicates inhibition of final deoxidation by pore closure, but apparently without adverse effect on the mechanical properties.
        4.
        2006.04 구독 인증기관·개인회원 무료
        For attaining optimum fatigue resistance of PM steels, high density levels are necessary. In this work, sintered steels Fe-1.5%Mo-0.6%C and Fe-1.5%Cr-0.2%Mo-0.6%C were produced with density levels of 7.1 to . Ultrasonic fatigue testing with 20 kHz was performed in push-pull mode up to 10E9 cycles. It was shown that the fatigue endurance strength is strongly improved by higher density levels, but also higher sintering temperatures are beneficial. The Cr-Mo steels proved to be superior to the plain Mo alloyed, due to a more favourable as-sintered matrix microstructure.
        5.
        2006.04 구독 인증기관·개인회원 무료
        Crack initiation and short crack propagation was studied on the polished notched surfaces of Cr-Mo prealloy sintered steels with 7.35 sintered density. An ultrasonic resonance test system operating in push-pull mode at 20 kHz and R=-1 was used. It showed that crack initiation took place in several places, small cracks growing oriented to the local pore structure rather than to stress orientation. Their growth rate is markedly higher than the corresponding one of long cracks. Finally, several microcracks join to form a dominant crack.