The objective of this study was to determine the growth and light utilization efficiency of garden plants in shade area through chlorophyll fluorescence reaction analysis. Ten garden plants was grown for 75 days under 50% and 80% shading conditions. Under shading, ET2O/RC, the fluorescence parameter related to electron-transport in photosystem II, was effectively enhanced. However, the electron transport flux until PSI acceptors per reaction center (RE1O/RC) was reduced. These changes in photochemical parameters evoked a decrease in performance index (PI) and driving force (DF) of electron transport flux. In addition, some photochemical parameters such as FV, FV/FO, RE1O/RC, ET2O/RC, PITOTAL ABS, and DFTOTAL ABS were found to be important for shade tolerance. Three species (Pachysandra terminalis Siebold & Zucc, Physostegia virginiana L., and Carex maculata Bott) were found to be shade tolerant. Based on these results, shading factor index (SFI) deduced from photochemical parameters is useful for evaluating of shading stress of garden plants.
In this study, growth enhancing effect of hatchery waste egg decomposed liquid fertilizer in pepper plant cultivation through chlorophyll fluorescence (O-J-I-P) analysis. In a whole growth period, egg decomposed fertilizer treated pepper grew well than non treated plant, though it was not statistically significantly different. Amount of chlorophyll fluorescence of non treated plant was higher thant that of fertilizer treated plant. It is determined that eventually lead to increased photosynthesis. In this study, six parameters, Fo, ABS/RC, RC/ABS, TRo/RC, DI0/RC, and DF Total ABS were the important factors represent efficiency of photochemical responses of pepper plant treated with hatchery waste egg decomposed fertilizer.
The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity (Fm) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield (Fv/Fm) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity (Fm) and Maximum fluorescence value (Fp) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (Φ PSII). Thus, NPQ and ΦPSII were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.
The pollen grain is a unique tricellular structure suitable for the delivery of the sperm cells to the ovule. All nutrients required for microspore and pollen cell growth are derived by passage through the anther locule and secretion by the tapetum lining. During later stages the tapetum degenerates but contributes to produce pigments, waxes, lipids and proteins which form the pollen coat and function in signaling between male (pollen) and female (pistil) tissues. The development of both normal pollen and tapetum is necessary for the fertilization processes in rice and would be exploited for the induction of male-sterility which is very useful to improve economic value of crops.
We aredeveloping new approaches using a conditional male-sterility for the F1 hybrid seed production in rice. The conventional three parental systems for F1 hybrid seed production requirethe following three lines: male-sterile line, maintainer line, and restorer line. In this system, a critical requirement is to maintain the male-sterile inbred lines. Here we suggest molecular approaches, in which the engineered male-sterile plants are generated by regulating endogenous hormonal balance through the loss-of-function of genes. We can expect the male-sterility can be restored by exogenous applications of hormones such as gibberellin or jasmonic acid. Based on two parental systems, we will address the answer onfollowing question: how can we maintain a male-sterile line producing 100% male-sterile progenies without a maintainer?
This work was supported by grants from Crop Functional Genomics Center of the 21C Frontier Program (CG1517), RepublicKorea.