검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitric oxide (NO) has an important role in oocyte maturation and embryonic development in mammals. This study examined the effect of exogenous NO donor S-nitroso-N-acetylpenicillamine (SNAP) in a maturation medium on meiotic progression and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) in pigs. When oocytes were exposed to 0.1 μM SNAP for first 22 h of in vitro maturation (IVM) in Experiment 1, SNAP significantly improved blastocyst development in both defined and standard follicular fluid-supplemented media compared to untreated control (48.4 vs. 31.7-42.5%). SNAP treatment significantly arrested meiotic progression of oocytes at the germinal vesicle stage at 11 h of IVM (61.2 vs. 38.7%). However, there was no effect on meiotic progression at 22 h of IVM (Experiment 2). In Experiment 3, when oocytes were treated with SNAP at 0.001, 0.1 and 10 μM during the first 22 h of IVM to determine a suitable concentration, 0.1 μM SNAP (54.2%) exhibited a higher blastocyst formation than 0 and 10 μM SNAP (36.6 and 36.6%, respectively). Time-dependent effect of SNAP treatment was evaluated in Experiment 4. It was observed that SNAP treatment for the first 22 h of IVM significantly increased blastocyst formation compared to no treatment (57.1% vs. 46.2%). Antioxidant effect of SNAP was compared with that of cysteine. SNAP treatment significantly improved embryonic development to the blastocyst stage (49.1-51.5% vs. 34.4-37.5%) irrespective of the presence or absence of cysteine (Experiment 5). Moreover, SNAP significantly increased glutathione (GSH) content and inversely decreased the reactive oxygen species (ROS) level and mitochondrial oxidative activity in IVM oocytes. SNAP treatment during IVM showed a stimulating effect on in vitro development of SCNT embryos (Experiment 7). These results demonstrates that SNAP improves developmental competence of PA and SCNT embryos probably by maintaining the redox homeostasis through increasing GSH content and mitochondrial quality and decreasing ROS in IVM oocytes.
        4,000원
        2.
        2018.11 구독 인증기관·개인회원 무료
        Generally, in vivo, primary oocytes are grown and matured into secondary oocytes in the ovarian follicles. Quality of the oocytes matured in vivo is higher than that of oocytes matured in vitro, indicating the importance of materializing the microenvironment of ovarian follicles for production of high quality oocyte. Therefore, we tried to mimic the stiffness of ovarian follicles using an agarose as a biocompatible natural polymer. Unfortunately, to date, there are no many reports on whether the quality of porcine oocytes can be increased effectively under the soft matrix. Accordingly, we tried to evaluate the effects of IVM using different mechanical properties of agarose substrate on developmental competence of porcine oocytes. Agarose substrate was constructed and cumulus-oocyte-complexes (COCs) retrieved from porcine medium antral follicles were matured on non-coated (control) culture dish or dishes coated with 1% and 2% (w/v) agarose substrate. Then, cumulus expansion, embryonic development after parthenogenetic activation, and gene expression level were analyzed and compared. As the results, significant increase in blastocyst formation and cumulus expansion were detected in COCs matured on 1% (w/v) agarose substrate compared with control. Moreover, oocytes of COCs matured on 1% (w/v) agarose substrate showed significantly higher BMP15 expression level compared with control. Pro-apoptotic gene BAX expression was significantly increased in oocytes of COCs matured on 2% (w/v) agarose substrate compared with control. In the glycolytic enzyme phosphofructokinase (PFKP) gene expression, cumulus cells of COCs matured on agarose substrate showed significantly higher PFKP expression than control while they showed significantly lower BAX expression than control. These results demonstrated that quality of porcine oocytes could be increased efficiently by the IVM of immature oocytes on the soft culture matrix using agarose.
        3.
        2018.11 구독 인증기관·개인회원 무료
        This study was conducted to evaluate the effects of insulin and epidermal growth factor (EGF) in a in vitro growth (IVG) medium on oocyte growth, in vitro maturation (IVM) and embryonic development of pig oocytes derived from small antral follicles (SAF) less than 3 mm in diameter. SAF oocytes were cultured for 2 days to induce IVG in alpha-minimal essential medium supplemented with 1 mM dbcAMP and 15% (v/v) fetal bovine serum. After IVG culture, oocyte maturation was induced by culturing IVG oocytes in IVM medium for 44 h. IVM oocytes that extruded the first polar body were selected and induced for parthenogenesis (PA) by applying electric stimulus. SAF oocytes cultured under the insulin treatment showed a significantly increased (P < 0.05) nuclear maturation (73.8%) compared to those cultured with insulin and EGF (59.8%). After PA, the proportions of blastocysts based on the number of metaphase II oocytes were significantly higher (P < 0.05) in oocytes that were cultured for IVG with insulin, EGF, and insulin + EGF (32.4%, 35.2%, and 34.8%, respectively) than in control (22.9%). IVG oocytes treated with insulin showed an increased oocyte diameter (116.3 μm) compared to those treated with insulin and EGF (114.0 μm) (P < 0.05). Intra-oocyte GSH content significantly increased (1.07 pixels/oocyte) by insulin treatment during IVG compared to that of oocytes treated with insulin + EGF (0.78 pixels/oocyte). These results demonstrate that IVG culture of SAF oocytes under insulin or/and EGF treatment supports oocyte maturation and improves embryonic development to the blastocyst stage after PA in pigs.
        4.
        2018.11 구독 인증기관·개인회원 무료
        U0126 is a highly selective inhibitor of both MEK1 and MEK2, a type of MAPK/ERK kinase. This study was conducted to evaluate the effect of U0126 treatment during in vitro maturation (IVM) on nuclear maturation, intra-oocyte glutathione content, and embryonic development after parthenogenesis (PA). U0126 (5 μM) was supplemented to IVM medium during the first 0 (control), 2, and 4 h. The basic medium used for IVM was medium-199 supplemented with 10% (v/v) porcine follicular fluid (standard), 0.6 mM cysteine, 0.91 mM pyruvate, 75 μg/ml kanamycin, and 1 μg/ml insulin. Immature pig oocytes were matured for 44 h and then oocytes reached metaphase II stage were electrically activated to induce PA. The in vitro culture medium for embryonic development was porcine zygote medium-3 containing 0.3% (w/v) fatty acid-free BSA. When immature oocytes were treated with U0126 during the first 0, 2, 4 h of IVM culture, nuclear maturation was significantly (P < 0.05) increased by the U0126 treatment for 4 h (96.2 ± 1.3%) compared to standard IVM (90.6 ± 2.1%). Cleavage of PA embryos was significantly increased by 4 h- treatment (90.6 ± 2.2%) compared to standard medium (83.9 ± 1.8%). In addition, blastocyst formation of PA embryos was significantly (P < 0.05) increased by the treatment for 4 h (55.8 ± 5.7%) compared to 2 h (38.1 ± 6.1%). The glutathione contents in IVM oocytes were not altered by the U0126 treatments for 0, 2, and 4 h (1.28 ± 0.10, 1.16 ± 0.09, and 1.10 ± 0.09, respectively). Our results demonstrated that 5 μM U0126 treatment during the first 4 h of IVM showed positive effects on nuclear maturation, cleavage, and embryonic development in pigs.
        5.
        2018.11 구독 인증기관·개인회원 무료
        Poor embryo quality and low blastocyst formation have been major limitations in establishment of cloned embryonic stem cells and production of cloned animals through somatic cell nuclear transfer (SCNT). Aggregation of embryos is a promising method for improving developmental competence of blastocysts. The aim of this study was to improve the blastocyst formation and the quality of parthenogenetic (PA) pig embryos by the aggregation of blastomeres at the 4-cell stage that were cultured in various type of culture dishes with or without phytohemagglutinin (PHA). The PA embryos were produced by the general method of our laboratory. On Day 2 after PA, the zona pellucida of 4 cell-stage embryos were removed by treatment with 0.5% (wt/vol) pronase solution. The 3x zona-free blastomere (ZFB) were randomly distributed in each of the following treatments for aggregation. ZFB were cultured for 5 days at 39℃ in an atmosphere 5% CO2, 5% O2, and 90% N2. In Experiment 1, effect of culture dishes on the aggregation efficiency and developmental competence of PA embryos were investigated. ZFB were cultured on non-coated (control) culture dish or dishes coated with 1% (wt/vol) agarose substrate (AS) or Well of the Well in dishes coated with 1% (wt/vol) agarose substrate (WAS). The ZFB cultured in WAS showed significantly higher (P<0.05) aggregation (81.2%) than AS and control (21.6-45.5%). The mean cell number in blastocysts derived from AS and WAS (81.4-89.3 cells/blastocyst) was significantly higher (P<0.05) than that of control (63.8 cells/blastocyst). In Experiment 2, effects of 150 ug/ml PHA treatment on the aggregation efficiency and developmental competence of embryos were investigated. The ZFB cultured in AS with PHA showed a higher (P<0.05) aggregation rate (90.0%) than that in AS without PHA, control with PHA, and control (39.2%, 57.9% and 17.5%, respectively). In conclusion, aggregation of porcine ZFB treated with PHA and agarose substrate could be a useful technique for producing improving blastocyst development with increased mean cell number of blastocysts in pigs.
        6.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was designed to determine the effect of monosodium glutamate (MSG) on in vitro maturation (IVM) of oocytes and early development of parthenogenesis (PA) embryos in pigs. Each IVM and IVC medium was supplemented with various concentrations (0, 0.1, 0.5 and 5 mM) of MSG and non-essential amino acids (NEAA) depending on the experimental design. Immature pig oocytes were matured for 44 h and then oocytes reached metaphase II (MII) stage were electrically activated to induce parthenogenesis (PA). When immature oocytes were treated with MSG in the absence of NEAA during IVM, nuclear maturation (83.1-87.1%), intra-oocyte glutathione content, cumulus expansion, and cleavage (91.4-93.4%) of PA embryos were not influenced by MSG treatment at all concentrations. However, blastocyst formation of PA embryos was significantly increased by 5.0 mM MSG (45.3 ± 6.2%) compared to control (25.6 ± 3.4%). MSG treatment during IVM in the presence of NEAA did not show significant effect on nuclear maturation of oocytes and blastocyst formation after PA while 0.5 mM MSG (89.3 ± 1.9%) decreased (P < 0.05) cleavage of PA embryos compared to 0.1 mM MSG (94.6 ± 1.1%). When PA embryos were treated for 7 days with MSG during IVC, 5.0 mM MSG significantly decreased blastocyst formation (27.8 ± 4.9%) compared to no treatment (41.4 ± 1.9%) while no decrease in blastocyst formation was observed in 0.1 and 0.5 mM (37.4 ± 3.4% and 34.4 ± 2.6%, respectively). Our results demonstrated that 5 mM MSG in a NEAA-free chemically defined maturation medium showed positive effect on PA embryonic development while 5 mM MSG treatment during IVC was deleterious to PA embryonic development in pigs.
        4,000원
        7.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mitochondrial dysfunction is found in oocytes and transmitted to offspring due to maternal obesity. Treatment of obese mothers with endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL) can reverse the mitochondrial dysfunction and result in normal embryonic development. Pig oocytes have also shown ER stress mostly in metaphase II stage. ER stress in oocytes may hinder the in vitro production of pig embryos. This study investigated the effect of ER stress inhibition by SAL treatment during in vitro maturation (IVM) of porcine oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we tested various concentrations of SAL. SAL at 10 nM showed higher (P < 0.05) developmental competence to the blastocyst stage (55.6%) after parthenogenesis (PA) than control (44.2%) while not different from other concentrations (49.2, 51.6, and 50.8% for 1, 50, and 100 nM, respectively). Secondly, we performed time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h of IVM significantly improved PA embryonic development to the blastocyst stage compared to control (40.5, 46.3, 51.7 and 60.2% for control, 0 to 22 h, 22 to 44 h and 0 to 44 h of IVM, respectively, P < 0.05). Glutathione (GSH) content is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on developmental competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decreased ROS level (P < 0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (39.6% vs. 24.7%, P < 0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development PA and cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.
        4,000원
        8.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in Vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in Vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in Vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in Vitro maturation of pig oocytes.
        4,000원
        9.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In most mammals, metaphase II (MII) oocytes having high maturation promoting factor (MPF) activity have been considered as good oocytes and then used for assisted reproductive technologies including somatic cell nuclear transfer (SCNT). Caffeine increases MPF activity in mammalian oocytes by inhibiting p34cdc2 phosphorylation. The objective of this study was to investigate the effects of caffeine treatment during in Vitro maturation (IVM) on oocyte maturation and embryonic development after SCNT in pigs. To this end, morphologically good (MGCOCs) and poor oocytes (MPCOCs) based on the thickness of cumulus cell layer were untreated or treated with 2.5 mM caffeine during 22-42, 34-42, or 38-42 h of IVM according to the experimental design. Caffeine treatment for 20 h during 22-42 h of IVM significantly inhibited nuclear maturation compared to no treatment. Blastocyst formation of SCNT embryos was not influenced by the caffeine treatment during 38-42 h of IVM in MGCOCs (41.1-42.1%) but was significantly improved in MPCOCs compared to no treatment (43.4 vs. 30.1%, P<0.05). No significant effects of caffeine treatment was observed in embryo cleavage (78.7-88.0%) and mean cell number in blastocyst (38.7-43.5 cells). The MPF activity of MII oocytes in terms of p34cdc2 kinase activity was not influenced by the caffeine treatment in MGCOCs (160.4 vs. 194.3 pg/ml) but significantly increased in MPCOCs (133.9 vs. 204.8 pg/ml). Our results demonstrate that caffeine treatment during 38-42 h of IVM improves developmental competence of SCNT embryos derived from MPCOCs by influencing cytoplasmic maturation including increased MPF activity in IVM oocytes in pigs.
        4,000원
        10.
        2016.10 구독 인증기관·개인회원 무료
        Crocin is a carotenoid that may protect cells against oxidative stress by scavenging free radicals particularly superoxide anions. It has been reported that oocyte maturation is influenced by the free radicals generated during in vitro culture (IVC) process. The objective of study was to examine the effect of crocin in in vitro maturation (IVM) medium as an antioxidant on oocyte maturation and embryonic development after parthenogenesis (PA). Cumulus-oocyte complexes (COCs) were collected from ovaries of prepubertal gilts. The basic medium for IVM was medium-199 containing 10% pig follicular fluid, cysteine, pyruvate, epidermal growth factor, kanamycin, insulin, and hormones. Oocytes were treated for 44 hours with crocin at 0, 25, 50, and 100 μg/ml during IVM. Oocytes reached the metaphase II stage were induced for PA and cultured for 7 days in porcine zygote medium-3. Nuclear maturation of oocytes was not influenced by various concentrations of crocin (89.0, 87.3, 84.3, and 94.1% for control, 25, 50, and 100 μg/ml crocin, respectively). IVM oocytes treated with 50 μg/ml crocin showed a higher (P<0.05) intraoocyte glutathione (GSH) contents than untreated oocytes (1.00 vs. 1.29 pixels/oocyte). Blastocyst formation of PA embryos treated with 50 (42.9%) and 100 μg/ml crocin (43.8%) was significantly higher (P<0.05) than oocytes treated with 25 μg/ml crocin (30.5%) but not different from that (35.2%) of untreated oocytes. In summary, crocin increases cytoplasmic maturation in terms of intraoocyte GSH content which may be beneficial for later embryonic development by protecting from harmful effect of reactive oxygen species. Further studies are needed to determine whether the beneficial effect of crocin treatment during IVC would be shown in embryonic development after in vitro fertilization and somatic cell nuclear transfer.
        11.
        2016.10 구독 인증기관·개인회원 무료
        Crocin is a carotenoid that may protect cells against oxidative stress by scavenging free radicals particularly superoxide anions. It has been reported that oocyte maturation is influenced by the free radicals generated during in vitro culture (IVC) process. The objective of study was to examine the effect of crocin in in vitro maturation (IVM) medium as an antioxidant on oocyte maturation and embryonic development after parthenogenesis (PA). Cumulus-oocyte complexes (COCs) were collected from ovaries of prepubertal gilts. The basic medium for IVM was medium-199 containing 10% pig follicular fluid, cysteine, pyruvate, epidermal growth factor, kanamycin, insulin, and hormones. Oocytes were treated for 44 hours with crocin at 0, 25, 50, and 100 μg/ml during IVM. Oocytes reached the metaphase II stage were induced for PA and cultured for 7 days in porcine zygote medium-3. Nuclear maturation of oocytes was not influenced by various concentrations of crocin (89.0, 87.3, 84.3, and 94.1% for control, 25, 50, and 100 μg/ml crocin, respectively). IVM oocytes treated with 50 μg/ml crocin showed a higher (P<0.05) intraoocyte glutathione (GSH) contents than untreated oocytes (1.00 vs. 1.29 pixels/oocyte). Blastocyst formation of PA embryos treated with 50 (42.9%) and 100 μg/ml crocin (43.8%) was significantly higher (P<0.05) than oocytes treated with 25 μg/ml crocin (30.5%) but not different from that (35.2%) of untreated oocytes. In summary, crocin increases cytoplasmic maturation in terms of intraoocyte GSH content which may be beneficial for later embryonic development by protecting from harmful effect of reactive oxygen species. Further studies are needed to determine whether the beneficial effect of crocin treatment during IVC would be shown in embryonic development after in vitro fertilization and somatic cell nuclear transfer.