검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2018.10 서비스 종료(열람 제한)
        Background : Light-Emitting Diodes (LEDs) have been reported to alter the composition of the secondary metabolites present in many plants. For example, light exposure has been reported to significantly affect secondary metabolite biosynthesis in plants, and irradiance levels have been reported to affect the concentration and production of both phenylpropanoids and carotenoids. Therefore, the objective of the present study was to determine the most effective LED light source in enhancing growth and secondary metabolites (polyphenols and carotenoids) and investigate the effect of LED illumination on production the of primary and secondary metabolites (polyphenols and carotenoids) in Vigna unguiculata L. Walp. sprouts Methods and Results : In order to determine the effect of light-emitting diodes (LEDs) on plant metabolism, the present study examined the primary and secondary metabolite profiles of Vigna unguiculata L. Walp. sprouts that were exposed to red, blue, white, or a combination of red and blue LEDs using high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), gas chromatography-mass spectrometry (GC-MS), and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). A total of 39 hydrophilic compounds were identified and quantitated using GC-TOF-MS, and six phenylpropanoids and six carotenoids were quantified using HPLC. The plants grown under blue LED light contained the highest level of total carotenoids (253.72 ± 17.27 ㎍/g) and phenylpropanoids (2,600.51 ± 4.90 ㎍/g). Thus, the current study provides a new approach for enhancing the carotenoid and phenylpropanoid production of V. unguiculata. Conclusion : This study suggests that blue LED light source is the most appropriate for the sprout growth and production of phenolic compounds and carotenoids in cowpea sprouts. Furthermore, these findings confirm that HPLC, GC-MS, and GC-TOF-MS are suitable for investigating metabolic relationships and offer a tenable strategy for enhancing secondary metabolite production using LED light sources.
        2.
        2018.10 서비스 종료(열람 제한)
        Background : Morus alba L. (M. alba L.), belonging to the family Moraceae, is widely distributed in East Asia. Fruits of M. alba L. have been used in traditional herbal medicine due to their antioxidant, anticancer, and antidiabetic properties. Phenolics play a main role for the growth, development, and pigment accumulation of plants. In this study, metabolic profiling of white (M. alba L. ‘Turkey’) and red (M. alba L. ‘Cheongil’) fruits during maturation. Methods and Results : Phenolic compounds are secondary metabolites found in most of the higher plants. In the current study, the levels of phenolic compounds decreased during the maturation of Turkey and Cheongil fruits. Particularly, the Turkey fruits showed a dramatic decrease in the accumulation of phenolics. Principal component analysis (PCA) is one of powerful tools to identify overall patterns in the multivariat experimental data. The PCA score plots results revealed a clear classification between Cheongil and Turkey. Additioanlly, each group spread left to right in the X-axis by maturity. Two principal components of the score plot explained 71.1% of the total variance. Principal component 1 was associated with the separation of each group by maturity and isolation of Turkey 1. Conclusion : In this study, we investigated primary metabolites and secondary metabolites (phenolics) in the white fruits (M. alba L. ‘Turkey’) and red fruits (M. alba L. ‘Cheongil’) in order to provide information on change in metabolite patterns during maturation.
        3.
        2018.10 서비스 종료(열람 제한)
        Background : Galantamine is mainly obtained from the bulbs and flowers of Galanthus caucasicus, Galanthus woronowii, and other related genera such as Narcissus tazetta, Narcissus pseudonarcissus, Leucojum aestivum, and Lycoris radiata. Galantamine is used to treat Alzheimer’s disease (AD) and as an AD painkiller. Narcissus tazetta (N. tazetta), belonging to the Amaryllidaceae family, is a ornamental plant containing galantamine. In this study, metabolic profiling of N. tazetta different organs was performed. Methods and Results : The amount of galantamine in bulb of N. tazetta is the highest levels. About 0.61 ± 0.09 ㎎/g in bulb, 0.15 ± 0.17 ㎎/g in root, and 0.10 ± 0.0 ㎎/g in leaf. Contents of galantamine in root and leaf are not statistically significant. The total phenolic contents in leaf are the highest level. Rutin and kaempferol are identified all part of N. tazetta. On the other hands, 4-hydroxybenzoic acid is existed in leaf and caffeic acid is only existed in root. None of the bulbs except rutin and kaempferol are identified. Because plant secondary metabolism is closely related to plant primary metabolism, we used GC-TOF-MS on the levels of hydrophilic low-molecular-weight molecules in the N. tazetta. A total of 41 metabolites, including sugars, amino acids, organic compounds, and phenolic acids, were identified and measured, and the resulting quantitative data were subjected to principal components analysis (PCA). The results of PCA of metabolic profiles clearly showed the lack of marked variance among different organs of L. radiata. Two principal components of the score plot explained 86.79% of the total variance (component 1; 55.40%, component 2; 31.39%). Component 1 resolved the separation of leaves from the other plant parts. Conclusion : Narcissus tazetta belongs to amaryllidaceae family. These family has various alkaloids, in particular, galantamine is beneficial to Alzheimer patients. All parts of N. tazetta produce galantamine, in particular, the highest level is existed in the bulb. In contrast, phenolic compounds are identified
        4.
        2018.10 서비스 종료(열람 제한)
        Background : Lycoris radiata (L. radiata), which belongs to Amaryllidaceae family, is native to Northeast Asia including Korea, Japan, and China. It is known for its high ornamental and medicinal values. Extensive research has been conducted in a several fields, including molecular biology, morphology, pharmacology, physiology, palynology, and chromosomal biology. The plant is notable for its various biological activities, including anti-cancer, anti-malarial, anti-microbial, reduction in blood pressure, anti-inflammatory, cytotoxicity, and neuroprotective effects. Methods and Results : The results of studies conducted in duplicate revealed the presence of a total of 325,609 and 404,019 unigenes, acquired from 9,913,869,968 and 10,162,653,038 raw reads, respectively, after trimming the raw reads using CutAdapt, assembly using Trinity package, and clustering using CD-Hit-EST. The resulting unigenes were annotated based on the NCBI Non-redundant protein database, as L. radiata is genetically closer to Elaeis guineensis and Phoenix dactylifera. The unigenes of L. radiata were clustered into three major categories: biological processes, cellular components, and molecular functions, with 51 functional sections. A large number of unigenes (203,157 and 224,813 from replicates 1 and 2, respectively) were categorized in the biological process cluster, followed by the cellular component cluster, and the molecular function cluster. With respect to the biological process category, the unigenes were assigned to 23 functional sections. The majority of unigenes were involved in cellular processes. Among the unigenes clustered as the cellular component with 14 sections, most genes were associated with the cell and cell parts. Furthermore, 78,017 and 88,817 unigenes, respectively, matched the molecular function cluster with 14 sections, of which most unigenes were related to binding and catalytic activity. Conclusion : This study provides functional information of L. radiata and highlights the use of the Illumina platform for transcriptome research.
        5.
        2016.10 서비스 종료(열람 제한)
        Background : Agastache rugosa (A.rugosa), belongs to the Labiatae family, is a perennial plant distributed in Korea, Japan, Taiwan and China. It is commonly called korean mint and commercially consumed as a medicinal plant in many countries since the crop contains monoterpenes and phenylpropanoids including rosmarinic acid, tilianin and acacetin. Achievement of hairy root cultures (HRCs) through infection of A rhizogenes is a valuable alternative approach, resulting from genetic and biochemical stability, rapid growth rates and synthesis of natural products. Methods and Results : The hairy root, obtained from the explant of A.rugosa, was cultured in the basal half-strength MS (Murashige & Skoog) medium. The dry weights (DW) of hairy roots was measured after 4-days freeze dryer. The highest levels of DW were obtained at hairy roots cultured in the basal medium supplemented with glucose, galactose and sucrose. The lowest weight was recorded after HRCs in the control, meant that the medium did not contain any carbon sources. Sucrose, glucose and galactose are the most suitable for the growth of korean mint hairy roots. the rosmarinic acid contents in the hairy roots varied responding to various carbohydrates. The basal media added with sucrose resulted in the highest value of rosmarinic acid, followed by the basal media with galactose and glucose. The control showed the lowest amount of rosmarinic acid. Conclusion : In this study, carbon source are of importance for growth and accumulation of rosmarinic acid accumulation in korean mint hairy roots. Especially, the accumulation of rosmrinic acid and hairy root growth was the most appropriate carbohydrate. The current study suggests HRCs of korean mint could provide an valuable alternative approaches for the enhanced production of rosmarinic acid.