검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        21.
        2016.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Inactive space objects are usually rotating and tumbling as a result of internal or external forces. KOREASAT 1 has been inactive since 2005, and its drift trajectory has been monitored with the optical wide-field patrol network (OWL-Net). However, a quantitative analysis of KOREASAT 1 in regard to the attitude evolution has never been performed. Here, two optical tracking systems were used to acquire raw measurements to analyze the rotation period of two inactive satellites. During the optical campaign in 2013, KOREASAT 1 was observed by a 0.6 m class optical telescope operated by the Korea Astronomy and Space Science Institute (KASI). The rotation period of KOREASAT 1 was analyzed with the light curves from the photometry results. The rotation periods of the low Earth orbit (LEO) satellite ASTRO-H after break-up were detected by OWL-Net on April 7, 2016. We analyzed the magnitude variation of each satellite by differential photometry and made comparisons with the star catalog. The illumination effect caused by the phase angle between the Sun and the target satellite was corrected with the system tool kit (STK) and two line element (TLE) technique. Finally, we determined the rotation period of two inactive satellites on LEO and geostationary Earth orbit (GEO) with light curves from the photometry. The main rotation periods were determined to be 5.2 sec for ASTRO-H and 74 sec for KOREASAT 1.
        22.
        2015.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.
        25.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        We study on the dynamic interaction with a simulated physical-biological coupled model response to nutrient reduction scenario in Jinhae Bay. According to the low relative errors, high regression coefficients of COD and DIN, and realistic distribution in comparison to the observation, our coupled model could be applicable for assessing the marine ecosystem response to nutrient input reduction in Jinhae Bay. Due to the new construction and expansion of sewage treatment plant from our government, we reduce 50% nutrient inputs near Masan Bay and sewage treatment plant. COD achieves Level Ⅱ in Korea standard of the water quality from the middle of the Masan Bay to all around Jinhae Bay except the inner Masan Bay remaining at Level Ⅲ. When our experiment reduces 50% nutrient inputs near Masan Bay and Dukdong sewage treatment plant simultaneously, COD decreases to about 0.1-1.2 mg/L (128°30’~128°40’ E , 35°05’~35°11’ N). The COD from the middle of the Masan Bay to Jinhae Bay achieves Level Ⅱ.
        1 2