Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin- 1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β- estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland.
The process of spontaneous abortion involves a complex mechanism with various cytokines, growth factors, and hormones during the pregnancy. However, the mechanism underlying spontaneous abortion by pro- and antiinflammatory cytokines in the serum during the pregnancy is not fully understood. Therefore, the purpose of this study was to examine the relationship between the serum levels of pro- and anti-inflammatory cytokines and spontaneous abortion using the CBA/j × DBA/2 mouse model. Serum levels of pro-inflammatory cytokines, such as IFN-γ, IL-1α and TNF-α were not increased in abortion model mice, but anti-inflammatory cytokines, such as IL-4, IL-13 and IL-1ra were decreased compared to normal pregnant mice. In addition, serum levels of chemokine, such as SDF-1, G-CSF, M-CSF, IL-16, KC and MCP-1 were decreased in abortion model mice compared to normal pregnant mice. However, the expression levels of nesfatin-1/NUCB2 mRNA and protein in the uteri of implantation sites were significantly higher in abortion model mice than normal pregnant mice. These results suggest that uterine nesfatin-1/NUCB2 expression may be down-regulated by inflammatory cytokines and chemokines in the serum of pregnant mice. Moreover, this study suggests the possibility that nesfatin-1/NUCB2 expressed in the implantation sites may be associated with the maintenance of pregnancy.
The pregnancy and abortion process involves a complex mechanism with various immune cells present in the implantation sites and several hormones associated with pregnancy, such as leptin, ghrelin and nesfatin-1. However, the mechanism underlying spontaneous abortion by maternal T helper 17 (Th17) present in the implantation sites and nesfatin-1, which is of anorexigenic hormones, is not fully understood so far. Therefore, the purpose of this study was to examine the possible roles of Th17 cells present in the implantation sites and nesfatin-1 expressed in the uterus on spontaneous abortion using the CBA/j × DBA/2 mouse model. Th17 transcription factor, ROR-γt mRNA expression was significantly increased in the abortion sites compared with the implantation sites of abortion model mice on day 14.5 and 19.5 of pregnancy. In addition, the expression levels of IL-17A mRNA were significantly higher in abortion sites than in implantation sites on day 14.5 and 19.5. Moreover, the nesfatin-1/NUCB2 protein and mRNA levels were increased in abortion sites compared with levels in implantation sites of both normal pregnant and abortion model mice on day 14.5 of pregnancy. Interestingly, nesfatin- 1/NUCB2 serum levels were not changed throughout the whole pregnancy in abortion model mice, but its serum level was dramatically increased on day 14.5, and then rapidly decreased on day 19.5 in normal pregnant mice. In this study, we showed for the first time the expression of nesfatin-1/NUCB2 mRNA and protein in implantation sites during pregnancy. The present results suggest that Th17 cells in the uterus may play an important role in the period of implantation and for maintenance of pregnancy. Furthermore, the present results suggest that Th17 cells in implantation sites may be a key regulator for maintenance of pregnancy and provides evidence that activation of these cells may be regulated by nesfatin-1/NUCB2. Further study is needed to elucidate the role of nesfatin-1 expressed in the uterus during pregnancy.
Nesfatin-1, an anorexic nucleobindin-2 (NUCB2)-derived hypothalamic peptide, controls appetite and energy metabolism. Recent studies show that nesfatin-1/NUCB2 is expressed not only in the brain but also in gastric and adipose tissues. Thus, we investigated the distributions of nesfatin-1/NUCB2 in various tissues of male and female mice by real-time PCR, western blotting, and immunohistochemical staining. Real-time PCR analyses showed that NUCB2 mRNA was predominantly expressed in the pituitary and at lower levels in the hypothalamus, spleen, thymus, heart, liver, and muscle of both male and female mice. Expression was much higher in reproductive organs, such as the testis, epididymis, ovary, and uterus, than in the hypothalamus. Western blot analysis of the nesfatin-1 protein level showed similar results to the real-time PCR analyses in both male and female mice. These results suggest that nesfatin-1/NUCB2 have widespread physiological effects in endocrine and non-endocrine organs. In addition, immunohistochemical staining revealed that nesfatin-1 was localized in interstitial cells, including Leydig cells and in the columnar epithelium of the epididymis. Nesfatin-1 was also expressed in theca cells and interstitial cells in the ovary and in epithelial cells of the endometrium and uterine glands in the uterus. These results suggest that nesfatin-1 is a novel potent regulator of steroidogenesis and gonadal function in male and female reproductive organs. Further studies are required to elucidate the functions of nesfatin-1 in various organs of male and female mice.
Nesfatin-1/NUCB2, which is associated with the control of appetite and energy metabolism, was reported for the first time to be expressed in the hypothalamus. However, recent studies have shown that nesfatin-1/NUCB2 was expressed not only in the hypothalamus, but also in various tissues including digestive and reproductive organs. We also demonstrated that nesfatin-1/NUCB2 was expressed in the reproductive organs, pituitary gland, heart, lung, and gastrointestinal tract of the adult mouse. However, little is known about nesfatin-1/NUCB2 expression in fetal and neonatal mice. Therefore, we examined here the distribution of nesfatin-1/NUCB2 in various organs of fetal and neonatal mice and compared them with the distribution in adult mice. As a result of immunohistochemical staining, nesfatin-1/NUCB2 protein was expressed relatively higher in the lung, kidney, heart, and liver compared to other organs in the fetus. Western blot results also showed that nesfatin-1/NUCB2 protein was detected in the lung, kidney, heart, and stomach. Next, we compared the expression levels of nesfatin-1/NUCB2 mRNA in the fetus and neonate with the expression levels in both male and female adult mice. The expression levels in heart, lung, stomach, and kidney were higher compared with other organs in fetal and neonatal mice and in both male and female adult mice. Interestingly, the expression of nesfatin-1/NUCB2 mRNA in the kidney was dramatically increased in male and female adult mice compared to fetal and neonatal mice. These results indicate that nesfatin-1/NUCB2 may regulate the development and physiological function of mouse organs. In the future, we need more study on the function of nesfatin-1/NUCB2, which is highly expressed in the heart, lung, and kidney during mouse development.
Recent study showed that T cells in the immune organs and peripheral blood are influenced by estradiol, leading to a dysfunction of the immune system. However, little is known about the thymic-gonadal relationship during the estrous cycle in mouse. Therefore, the purpose of this study was to elucidate the mechanism by which a change in estradiol levels during the estrous cycle regulates the development of T cells in the mouse thymus. Six-week-old ICR mice were used and divided into four groups, including diestrous, proestrous, estrous, and metestrous. We first confirmed that ER-α and - β estrogen receptors were expressed in thymic epithelial cells, showing that their expression was not different during the estrous cycle. There was also no significant difference in thymic weight and total number of thymocytes during the estrous cycle. To determine the degree of thymocyte differentiation during the estrous cycle, we analyzed thymocytes by flow cytometry. As a result, the percentage of CD4+CD8+ double-positive (DP) T cells was significantly decreased in the proestrous phase compared to the diestrous phase. However, CD4+CD8- or CD4-CD8+ (SP) T cells were significantly increased in the proestrous phase compared to the diestrous phase. In addition, the percentage of CD44+CD25- (DN1) T cells was significantly decreased in the estrous phase compared to other phases, whereas the percentages of CD44+CD25+ (DN2), CD44-CD25+ (DN3), and CD44-CD25- (DN4) were not changed during the estrous cycle. These results indicate that the development of thymocytes may arrest in the DP to SP transition stage in the proestrous phase displaying the highest serum level of estradiol. This study suggests that a change in estradiol levels during the estrous cycle may be involved in the regulation of thymocyte differentiation in the mouse thymus.
내분비교란물질로 알려진 Tributyltin(TBT)는 흰쥐 정소 내 생식세포와 간질세포의 세포자연사를 일으켜 정소의 기능을 감소시키는 것으로 보고되고 있으나, 그 기전은 명확히 밝혀져 있지 않다. 따라서 본 연구에서는 정소 내 간질세포를 표적으로 TBT에 의해 지방세포로 분화가 유도되는 지를 확인하고, 이로 인한 정소 내 세포자연사와의 연관성을 알아보고자 하였다. 3주령 된 수컷 흰쥐에 각각 TBT 1 ㎎과 10 ㎎/㎏/day을 1주일 동안 경구 투여한 후 정소를 분리하여 무게를 측정하였다. 획득된 정소의 일부는 냉동 절편을 만들어 BODIPY로 지방세포를 염색하였고, 일부는 파라핀 절편을 만들어 TUNEL 염색을 수행하였다. 나머지 정소는 정소 백색막을 제거한 후 세정관 사이에 존재하는 간질세포를 분리하였다. 분리된 간질세포에서 total RNA를 추출한 다음 real-time PCR 방법으로 지방세포 유도 유전자들과 세포자연사 관련 유전자들을 분석하였다. 정소의 무게는 대조군에 비교해 TBT 10 ㎎을 투여한 군에서 유의하게 감소하였다. BODIPY 염색 결과, TBT 10 ㎎을 투여한 군의 간질세포에서 염색된 세포의 수가 증가하였고, TUNEL 염색 결과에서도 대조군과 비교해 TBT 투여한 군에서 간질세포 내 세포자연사가 증가하는 것을 확인할 수 있었다. Real-time PCR을 이용해 간질세포 내 유전자 발현을 분석한 결과, 투여된 TBT의 농도가 증가할수록 PPARγ, aP2, PLIN, PGAR 등 지방세포 유도 유전자들의 발현이 증가하였고, 이와 함께 TNFRSF1A, TNFSF10과 같은 세포자연사 관련 유전자의 발현도 증가하는 것을 확인할 수 있었다. 이상의 결과에서 환경성 내분비 교란물질로 알려진 TBT에 노출될 경우 정소 내 간질세포의 지방세포로의 분화가 유발되면서 세포자연사가 증가하고, 이에 따른 정소 기능의 저하를 야기시킬 수 있는 것으로 사료된다.
최근 시상하부에서 생성되는 nesfatin-1/NUCB2가 섭식과 에너지 대사를 조절한다는 사실이 새롭게 밝혀졌다. 본 연구에서는 이러한 단백질이 생쥐의 생식기관에서도 발현을 하는지, 그리고 그 수용체가 생식기관 내에 존재하는 지를 확인함으로써 nesfatin-1이 생식기능에 미칠 수 있는 가능성을 알아보고자 하였다. 암컷 생쥐에서 난소와 자궁을 획득하여 conventional PCR 방법으로 NUCB2 mRNA 발현을 조사하였고, real-time PCR 방법으로 상대적인 NUCB2 mRNA 발현량을 비교 분석하였다. 난소 내 nesfatin-1 단백질의 발현 위치를 조사하기 위하여 nesfatin-1 항체를 이용한 면역조직화학염색법을 수행하였으며, biotin conjugated nesfatin-1을 이용하여 nesfatin-1 결합 부위를 확인하였다. 또한 생식소 내 NUCB2 mRNA 발현이 성선자극호르몬에 의해 영향을 받는지 알아보기 위해 PMSG 투여 후 NUCB2 mRNA 발현량을 조사하였다. 실험 결과, 생쥐의 난소와 자궁에서 확인된 NUCB2 유전자가 시상하부에서 만큼이나 많은 양이 발현되고 있었다. 면역조직화학적 염색 결과, nesfatin-1 단백질은 협막세포와 대부분의 기질세포에서 발현되었고, 일부 황체세포에서도 발현이 확인되었다. 반면, 난포 내 과립세포에서는 발현되지 않았으나, 특정 난포 내 난자에서는 발현됨을 확인하였다. 한편, nesfatin-1 단백질의 결합 부위는 난소 백막 주위의 기질세포와 협막세포에서 관찰되었다. 또한 PMSG 투여 후 난소와 자궁에서 NUCB2 mRNA의 발현이 유의하게 증가함을 확인하였다. 이상의 결과에서 난소 내 nesfatin-1 단백질의 발현과 그 결합 부위의 존재는 nesfatin-1이 뇌에서 뿐만 아니라 생식기관에서도 국부조절인자로써 중요한 역할을 할 것으로 사료되며, 앞으로 생식기관에 미치는 nesfatin-1의 역할을규명하기위한더많은연구가필요하다고판단된다.