검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 67

        2.
        2023.05 구독 인증기관·개인회원 무료
        Metakaolin-based geopolymers have shown promise as suitable candidates for 14C immobilization and final disposal. It has been shown that the physicochemical properties of metakaolin wasteforms meet, and often far exceeding, the strict compression strength and leaching acceptance criteria of the South Korea radioactive waste disposal site. However, it is not possible to analyze and characterize the internal structure of the geopolymer wasteform by conventional characterization techniques such as microscopy without destruction of the wasteform; an impractical solution for inspecting wasteforms destined for final disposal. Internal inspection is important for ensuring wastes are homogenously mixed throughout the wasteform and that the wasteform itself does not pose any significant defects that may have formed either during formulation and curing or as a result of testing prior to final disposal. X-ray Computed Tomography (XCT) enables Non-Destructive Evaluation (NDE) of objects, such as final wasteforms, allowing for both their internal and external, characterization without destruction. However, for accurate quantification of an objects dimensions the spatial resolution (length and volume measures) must be know to a high degree of precision and accuracy. This often requires extensive knowledge of the equipment being used, its precise set-up, maintenance and calibration, as well as expert operation to yield the best results. A spatial resolution target consists of manufactured defects of uniformed dimensions and geometries which can be measured to a high degree of accuracy. Implementing the use of a spatial resolution target, the dimensions of which are known and certified independently, would allow for rapid dimensional calibration of XCT systems for the purpose of object metrology. However, for a spatial resolution target to be practical it should be made of the same material as the intended specimen, or at least exhibit comparable X-ray attenuation. In this study, attempts have been made to manufacture spatial resolution targets using geopolymer, silica glass, and alumina rods, as well as 3D printed materials with varying degrees of success. The metakaolin was activated by an alkaline activator KOH to from a geopolymer paste that was moulded into a cylinder (Diameter approx. 25 mm). The solidified geopolymer cylinder as well as both the silica glass rod and alumina rod (Diameter approx. 25 mm) we cut to approximately 4 mm ± 0.5 mm height with additional end caps cut measuring 17.5 mm ± 2.5 mm height. All parts were then polished to a high finish and visually inspected for their suitability as spatial resolution targets.
        6.
        2016.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We estimate the fractal dimension of the ρ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (v, l, b) database, obtained with J = 1−0 transition lines of 12CO and 13CO at a resolution of 22′′ using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K (3σ) and 3.75 K (5σ), the fractal dimension of the target cloud is estimated to be D = 1.52–1.54, where P / AD/2 , which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to rms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).
        4,000원
        20.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present a multi-dimensional reduction method of the surveyed cube database obtained using a single- dish radio telescope in Taeduk Radio Astronomy Observatory (TRAO). The multibeam receiver system installed at the 14 m telescope in TRAO was not optimized at the initial stage, though it became more stabilized in the following season. We conducted a Galactic Plane survey using the multibeam receiver system. We show that the noise level of the first part of the survey was higher than expected, and a special reduction process seemed to be definitely required. Along with a brief review of classical methods, a multi-dimensional method of reduction is introduced; It is found that the ‘background’ task within IRAF (Image Reduction and Analysis Facility) can be applied to all three directions of the cube database. Various statistics of reduction results is tested using several IRAF tasks. The rms value of raw survey data is 0.241 K, and after primitive baseline subtraction and elimination of bad channel sections, the rms value turned out to be 0.210 K. After the one-dimensional reduction using ‘background’ task, the rms value is estimated to be 0.176 K. The average rms of the final reduced image is 0.137 K. Thus, the image quality is found to be improved about 43% using the new reduction method.
        4,000원
        1 2 3 4