Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction factor of DAW vitrification is high. The KHNP developed the optimal glass composition for the vitrification of DAW. Since vitrification offers a high-volume reduction ratio, it is expected that disposal costs could be greatly reduced by the use of such technology. The DG-2 glass composition was developed to vitrify DAW. During the maintenance of nuclear power plants, metals containing paper, clothes, and wood are generated. ZrO2 and HfO2 are generally considered to be network-formers in borosilicate-based glasses. In this study, a feasibility study of vitrification for DAW that contains metal particulates is conducted to understand the applicability of this process under various conditions. The physicochemical properties are characterized to assess the applicability of candidate glass compositions.
For efficient design and manufacture of PWR spent fuel burnup detector, data simulated with various condition of spent fuel in the NPP storage pool is required. In this paper, to derive performance requirements of spent fuel burnup detector for neutron flux and dose rates were evaluated at various distances from CE16 and WH17 types of fuel, representatively. The evaluation was performed by the following steps. First, the specifications of the spent fuel, such as enrichment, burnup, cooling time, and fuel type, were analyzed to find the conditions that emit maximum radioactivity. Second, gamma and neutron source terms of spent fuel were analyzed. The gamma source terms by actinides and fission products and neutron source terms by spontaneous and (α, n) reactions were calculated by SCALE6 ORIGAMI module. Third, simulation input data and model were applied to the evaluation. The material composition and dose conversion factor were referred as PNNL-15870 and ICRP-74 data, respectively and dose rates were displayed with the MCNP output data. It was assumed that there was only one fuel modeled by MCNP 6.2 code in pool. The evaluation positions for each distance were selected as 5 cm, 10 cm, 25 cm, 50 cm, and 1 m apart from the side of fuel, respectively. Fourth, neutron flux and dose rates were evaluated at distance from each fuel type by MCNP 6.2 code. For WH 17 types with a 50 GWd/MTU burnup from 5 cm distance close to fuel, the maximum neutron flux, gamma dose rates and neutron dose rates are evaluated as 1.01×105 neutrons/sec, 1.41×105 mSv/hr and 1.61×101 mSv/hr, respectively. The flux and dose rate of WH type were evaluated to be larger than those of CE type by difference in number of fuel rods. The relative error for result was less than 3~7% on average secured the reliability. It is expected that the simulated data in this paper could contribute to accumulate the basic data required to derive performance requirements of spent fuel burnup detector.
This paper presents a study on the design and implementation of a secure contactless system leveraging Quick Response (QR) codes as a core component. The main goal of this system is to bridge the gap between strong security and improved user experience within the realm of digital interaction. The system's versatility can be expanded with broad compatibility with a variety of applications. Utility can be expanded to areas such as contactless payments, electronic ticketing, secure identity verification, and convenient access to medical records. The international standardization of QR codes ensures seamless cross-platform compatibility, strengthening their role in the digital ecosystem. We actually create and develop a non-contact security QR code system and check the expandability of the system. This study highlights the pivotal role of QR codes within the realm of secure contactless systems. Through its effective balance of digital security and user convenience, QR codes are emerging as an important element in the continued development of a secure and user-friendly digital environment. The potential for future research lies in exploring more complex use cases and further advancements that improve both security and user-centered design.