분리막 기술은 에너지 효율성과 연속공정 구성의 이점을 지니고 있으나, 소재 자체의 열역학적 선택도 한계로 인 해 유사 물질 간의 정밀 분리에 제약이 있다. 본 총설에서는 entrainer-assisted membrane separation (EMS) 전략을 통해 크기 공비(size-azeotrope) 난제를 공정 기반으로 극복하는 방안을 고찰한다. Ni/Na, Li/Na 등 혼합계 및 이온교환계에서의 실제 적 용 사례를 중심으로 EMS 전략의 작동 원리, 공정 설계의 유연성, 소재 재사용성과 확장 가능성을 정리하였으며, 향후 기술 적용을 위한 과제와 소재–공정 통합 설계 방향을 제안하였다.
수전해 시스템에서 제어되지 않은 수소 크로스오버(hydrogen crossover)는 효율 저하 및 폭발 위험성 등을 야기시 키는 위험 요인이다. 수전해 공정에서 양이온교환막(cation exchange membrane, CEM)은 완전히 수화된 상태로 운전되기 때 문에 이중상(two-phase) 물질로 취급하는 것이 중요하다. 본 총설에서는 수소 크로스오버의 특성 평가 중 발생할 수 있는 주 요 기술적 문제를 요약하였다. 특히, pressure decay method (PDM)는 수소 크로스오버를 정확하게 측정하기 위한 기법으로 평가되며, 막 내부 구조 분석에도 활용할 수 있다. 또한, 수소 크로스오버를 평가하는 데 있어 permeability (즉, 고유 물질 특 성) 차원의 고유한 한계를 논의하고, 공정 안전성을 위해 flux 기반(즉, 공정 파라미터)으로의 전환 필요성을 강조한다. 추가 적으로, 막-촉매 계면에서의 과포화(supersaturation) 현상이 크로스오버에 미치는 영향에 대한 연구 필요성을 강조한다.
높은 내화학성과 소수성 특성을 갖는 polymethylpentene (PMP) 소재는 polypropylene 소재 대비 결정성이 낮아 dense skin층을 갖는 비대칭 분리막을 제조하기 수월하지만 녹는점이 높아 가공이 용이하지 않다. 본 연구에서는 비용매 유도 상분리법(NIPS)과 열유도 상분리법(TIPS)을 혼합한 N-TIPS 법을 활용하여 polymethylpentene (PMP) 고분자 분리막을 제조 하고 성능과 특성을 평가하였다. Cyclohexane을 용매로 사용하여 PMP 도프용액을 제조하였으며, 상전이조로 물, EtOH, IPA 를 사용하였다. Cyclohexane과 섞이지 않는 물을 비용매로 상전이한 분리막은 TIPS 영향으로 인해 큰 기공과 높은 기체 투과 도를 보였으나, 표면이 거칠고 구조가 불안정한 특성을 보였다. 반면, cyclohexane과 혼합될 수 있는 알코올류(ethanol, isopropanol) 를 상전이조로 사용한 경우 NIPS 효과로 인해 dense skin층이 형성됨을 확인하며, 높은 기계적 강도를 보였다. 추가 적인 기공형성을 위해 polyethylene glycol (PEG)를 첨가한 경우 기체투과도가 높아지는 결과를 얻을 수 있었다.
고성능 분리막 제조기술과 더불어 새로운 분리막 다단공정 설계를 통해 용매사용량 감소 및 선택도 향상이 가능 하다. 본 연구에서는 내용매성 셀룰로스 나노분리막을 제조하여 용매에 따른 용질의 선택도 차이를 비교하였다. 제막한 셀룰 로스 막을 기반으로 비극성 용매의 선택도 평가를 진행하였으며, 비극성 용매에서 용질에 대한 음배제율이 관측되었다. 특히, 분자량이 클수록 음배제율이 높아지는 역선택도의 거동을 확인하였다. 이를 기반으로 설계한 공정에서는 기존 분획 공정 대 비 3배 이상의 용매저감이 가능한 것을 확인할 수 있었다.