Clostridium perfringens (C. perfringens) may cause diarrhea and enterotoxemia in adult and young livestock, leading to problems in the production and management of farms. Four hundred fecal samples were collected from 25 goat farms located in Gyeongsangbuk-do Province in the Republic of Korea. Sixteen C. perfringens strains were isolates from fecal samples, and the isolates were identified as type A (n=11) and type D (n=5). Additionally, α- and ε-toxin genes were detected in 16 and 5 strains by PCR, respectively, and the enterotoxin gene was presented in 2 strains. The antibiotic susceptibility test was performed using the disk diffusion method and E-test method. In the disk diffusion method, ampicillin (n=16) and chloramphenicol (n=15) were highly susceptible to 16 C. perfringens isolates. In the E-test method, ampicillin, amoxicillin, amoxicillin/clavulanic acid and meropenem were susceptible to more than 14 of 16 C. perfringens isolates. This study indicates that administration of antibiotics such as ampicillin, amoxicillin/clavulanic acid and meropenem can prevent and treat C. perfringens infections in goats.
The uniform nanofibers of polyurethane with different contents of Juniperus Chinensis extracts were successfully prepared by electrospinning method. Polyurethane is widely used as functional polymers in the industrials, medical field as their properties can be tailor-made by adjusting their compositions. Juniperus Chinensis has been reported for anti-tumor, anti-bacterial, anti-fungal, and anti-viral activities. PU/Juniperus Chinensis extracts composite nanofibers were produced at different Juniperus Chinensis extracts concentrations (0.25, 0.5, 1, 1.5wt.%). The effects of the major parameters in electrospinning process such as tip to collector distance (TCD), voltage, polymer concentration on the average diameter of electrospun nanoweb were investigated. As results, 12wt% PU solution concentration, 8kV applied voltage and 15cm tip to collector distance were identified as optimum conditions for electrospinning the composite nanofibers. The diameter and morphology of the nanocomposite nanofibers were confirmed by a scanning electron microscopy (SEM). The resulting fibers exhibited a uniform diameter ranging from 435nm∼547nm. It has been found that the average diameters of fibers decreased by the adding of Juniperus Chinensis extracts. These nanowebs can be used for medical materials, protective clothing, and antimicrobial filters.
전기방사는 높은 비표면적을 가지는 마이크로∼나노 단위 직경의 나노섬유를 생산하는 간단하고 효율적인 공정이 다. 따라서 식물 추출물과 폴리머를 혼합한 방사용액으로 손쉽게 의료용 나노섬유의 제조가 가능하다. 향나무는 라 디칼 생성, 화상, 세포손상과 같은 자외선과 SLS에 의한 피부손상을 방지하는데 효과적이라고 알려져 있다. 또한 방미효과와 함께 집먼지 진드기 방지 효과가 보고된 바 있다. 전기방사로 향나무 추출물을 함유하여 제조한 PVA 나노섬유를 연구하였다. 향나무 추출물의 서로 다른 농도(0.25, 0.5, 1.5 wt. %)를 함유하는 PVA/향나무 추출물 나노 복합섬유를 제조하였으며 방사용액의 농도, 인가전압, TCD 등의 전기방사 조건을 최적화 하였다. 연구결과 균일한 PVA/향나무 추출물 나노 복합섬유을 얻을 수 있는 최적 조건으로 PVA 농도는 12wt%, 인가전압은 10 Kv, TCD는 10∼20 cm로 나타나났다. 제조된 전기방사 나노 복합섬유의 형태 및 미세구조를 SEM을 통해 관찰하였다. 향나무 추출물의 첨가에 의해 나노섬유의 직경이 증가하는 것으로 나타났다. 결과적으로 310∼360 nm의 직경범위를 가지 는 PVA/향나무 추출물 복합 나노섬유가 전기방사를 통해 성공적으로 얻어졌다.
In the process of bone remodeling, mineral phase of bone is dissolved by osteoclasts, resulting in elevation of calcium concentration in micro-environment. This study was performed to explore the effect of high extracellular calcium (Cα²+e) on mineralized nodule formation and on the expression of progressive ankylosis (Ank), plasma cell membrane glycoprotein-1 (PC-1) and osteopontin by primary cultured mouse calvarial cells. Osteoblastic differentiation and mineralized nodule formation was induced by culture of mouse calvarial cells in osteoblast differentiation medium containing ascorbic acid and β-glycerophosphate. Although Ank, PC-1 and osteopontin are well known inhibitors of mineralization, expression of these genes were induced at the later stage of osteoblast differentiation during when expression of osteocalcin, a late marker gene of osteoblast differentiation, was induced and mineralization was actively progressing. High Cα²+e(10 mM) treatment highly enhanced mRNA expression of Ank, PC-1 and osteopontin in the late stage of osteoblast differentiation but not in the early stage. Inhibition of p44/42 MAPK activation but not that of protein kinase C suppressed high Cα²+e- induced expression of Ank, PC-1 and osteopontin. When high Cα²+e (5 mM or 10 mM) was present in culture medium during when mineral deposition was actively progressing, matrix calcifiation was significantly increased by high Cα²+e. This stimulatory effect was abolished by pyrophosphate (5 mM) or levamisole (0.1-0.5 mM), an alkaline phosphatase inhibitor. In addition, probenecid (2mM), an inhibitor of Ank, suppressed matrix calcification in both control and high Cα²+e- treated group, suggesting the possible role of Ank in matrix calcification by osteoblasts. Taken together, these results showed that high Cα²+e stimulates expression of Ank, PC-1 and osteopontin as well as matrix calcification in late differentiation stage of osteoblasts and that p44/42 MAPK activation is involved in high Cα²+e- induced expression of Ank, PC-1 and osteopontin.
Dlx3 is a homeodomain protein and is known to play a role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM #190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. The molecular mechanisms that explain the phenotypic characteristics of TDO syndrome have not been clearly determined. In this study, we examined phenotypic characteristics of wild type DLX3(wtDlx3) and 4-BP DEL DLX3 (TDO mtDlx3) in C2C12 cells. To investigate how wtDlx3 and TDO mtDlx3 differentially regulate osteoblastic differentiation, reporter assays were performed by using luciferase reporters containing the promoters of alkaline phosphatase, bone sialoprotein or osteocalcin. Both wtDlx3 and TDO mtDlx3 enhanced significantly all the reporter activities but the effect of mtDlx3 was much weaker than that of wtDlx3. In spite of these differences in reporter activity, electrophoretic mobility shift assay showed that both wtDlx3 and TDO mtDlx3 formed similar amounts of DNA binding complexes with Dlx3 binding consensus sequence or with ALP promoter oligonucleotide bearing the Dlx3 binding core sequence. TDO mtDlx3 exhibits a longer half-life than wtDlx3 and it corresponds to PESTfind analysis result showing that potential PEST sequence was missed in carboxy terminal of TDO mtDlx3. In addition, co-immunoprecipitation demonstrated that TDO mtDlx3 binds to Msx2 more strongly than wtDlx3. Taken together, though TDO mtDlx3 acted as a weaker transcriptional activator than wtDlx3 in osteoblastic cells, there is possibility that during in vivo osteoblast differentiation TDO mtDlx3 may antagonize transcriptional repressor activity of Msx2 more effectively and for longer period than wtDlx3, resulting in enhancement of osteoblast differentiation.
Dlx3 is a homeodomain protein and is known to playa role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM # 190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. Although the observed defects of TDO syndrome involves bone, little is known about the role of Dlx3 in bone remodeling process. In this study, we examined the effect of wild type DLX3 (wtDlx3) expression on osteoclast differentiation and compared it with that of 4-BP DEL DLX3 (TDO mtDlx3). To examine whether Dlx3 is expressed during RANKL-induced osteoclast differentiation, RAW264.7 cells were cultured in the presence of receptor activator of nuclear factor-B ligand (RANKL). Dlx3 protein level increased slightly after RANKL treatment for 1 day and peaked when the fusion of prefusion osteoclasts actively progressed. When wtDlx3 and TDO mtDlx3 were overexpressed in RAW264.7 cells, they enhanced RANKL-induced osteoclastogenesis and the expression of osteoclast differentiation marker genes such as calcitonin receptor, vitronectin receptor and cathepsin K. Since osteoclast differentiation is critically regulated by the balance between RANKL and osteoprotegerin (OPG), we examined the effect of Dlx3 overexpression on expression of RANKL and OPG in C2C12 cells in the presence of bone morphogenetic protein 2. Overexpression of wtDlx3 enhanced RANKL mRNA expression while slightly suppressed OPG expression. However, TDO mtDlx3 did not exert significant effects. This result suggests that inability of TDO mtDlx3 to regulate expression of RANKL and OPG may contribute to increased bone density in TDO syndrome patients. Taken together, it is suggested that Dlx3 playa role as a positive regulator of osteoclast differentiation via up-regulation of osteoclast differentiation-associated genes in osteoclasts, as well as via increasing the ratio of RANKL to OPG in osteoblastic cells.
Tooth loss in elderly is mainly caused by alveolar bone loss via severe periodontitis. Although the severity of periodontitis is known to be affected by age, the aging process or the genetic changes during the aging of periodontal tissue cells are not well characterized. In this study, we investigated the effect of in vitro aging on the change of gene expression pattern in periodontal fibroblasts. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDL) were obtained from two young patients and replicative senescence was induced by sequential subcultivation. When more than 90% cells were positively stained with senescence-associated β-galactosidase, those cells were regarded as aged cells. In aged GF and PDL, the level of phosphorylated retinoblastoma (RB) and p16INK4A protein was significantly decreased and increased, respectively. However, the protein level of p53 and p21, well known senescence-inducing genes, did not increase in aged GF and PDL. Although P27Kip1 and p15INK4B, another cyclin-dependent kinase inhibitors, were reported to be involved in replicative senescence of human cells, they were decreased in aged GF and PDL. Because senescent cells showed flattened and enlarged cell shape and are known to have increased focal adhesion, we examined the protein level of several integrins. Aged GF and PDL showed increased protein level of integrin α2, αu, and β1. When the gene expression profiles of actively proliferating young cells and aged cells were compared by cDNA microarray of 3,063 genes and were confirmed by reverse transcription-polymerase chain reaction, 7 genes and 15 genes were significantly and commonly increased and decreased, respectively, in aged GF and PDL. Among them, included are the genes that were known to be involved in the regulation of cell cycle, gene transcription, or integrin signaling. The change of gene expression pattern in GF and PDL was minimally similar to that of oral keratinocyte. These results suggest that p16INK4A/RB might be involved in replicative senescence of periodontal fibroblasts and the change of gene expression profile during aging process is cell type specific.
Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and 1.25(OH)₂vitaminD₃(VD3) by using mouse oligo 11 K gene chip. In the presence of 10 mM [Ca²+]e or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.
Recently, we reported that high extracellular calcium increased receptor activator of nuclear factor- xB ligand (RANKL) expression via p44/42 mitogen-activated protein kinase (p44/42 MAPK) activation in mouse osteoblasts. However, the mechanism for p44/42 MAPK activation by high extracellular calcium is unclear. In this study, we examined the role of intracellular calcium increase in high extracellular calcium-induced RANKL induction and p44/42 MAPK activation. Primary cultured mouse calvarial osteoblasts were used. RANKL expression was highly induced by 10 mM calcium treatment. Ionomycin, a calcium ionophore, also increased RANKL expression and activated p44/42 MAPK. U0126, an inhibitor of MEK1/2, an upstream activator of p44/42 MAPK, blocked the RANKL induction by both high extracellular calcium and ionomycin. High extracellular calcium increased the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), one of the known upstream regulators of p44/42 MAPK activation. Bisindolylmaleimide, an inhibitor of protein kinase C, did not block RANKL induction and p44/42 MAPK activation induced by high extracellular calcium. 2-Aminoethoxydiphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, blocked the RANKL induction by high extracellular calcium. It also partially suppressed the activation of Pyk2 and p44/42 MAPK. Cyclosporin A, an inhibitor of calcineurin, also inhibited high calcium-induced RANKL expression in dose dependent manner. However, cyclosporin A did not affect the activation of Pyk2 and p44/42 MAPK by high extracellular calcium treatment. These results suggest that 1) the increase in intracellular calcium via IP3-mediated calcium release is necessary for RANKL induction by high extracellular calcium treatment, 2) Pyk2 activation, but not protein kinase C, following the increase in intracellular calcium might be involved in p44/42 MAPK activation, and 3) calcineurin-NFAT activation by the increase in intracellular calcium is involved in RANKL induction by high extracellular calcium treatment.