One of released radioactive gases from a spent fuel is cesium (137Cs) as semi-volatile fission products and reticulated ceramic foam could be used for capturing the gaseous cesium. It has threedimensional open-pore structures and consumes cesium above 600°C to form cesium species including Cs-nepheline (CsAlSiO4) and pollucite (CsAlSi2O6) phases. Kaolinite-based foam filter is a favorable ceramic filter because they exhibit superior capture characteristics compared to other aluminosilicate minerals and other shape filters. However, for usage in special conditions, structural limitations such broken struts must be improved. Here, recoating by using centrifugation, followed by a pre-sintering cycle was conducted for covering the cracks and voids, resulting from the burnout of the polyurethane sponge as a sacricial template. The slurry including additives was chosen by considering viscous behavior of slurries for the centrifugation. The microstructure and strength was improved by the recoating.
Reticulated foams have a continuous skeleton network consisting of aluminosilicates and are used for capturing gaseous cesium released from spent nuclear fuel at high temperature. It has high stability to high temperature and good capturing performance. Homogeneous cell distribution and modified surface structures are indispensable conditions for stable operation and handling. In particular, triangularly shaped holes inside the struts were generated during the pyrolysis of polyurethane sponge as a sacricial template, which lead to limite the strength of the reticulated foam as well as cracks. However, several attempts have been focused on the increasing the strut thickness. Here, we have prepared ceramic foams by the polyurethane sponge replication method with roller squeezing. Ceramic slurry including additives was determined with consideration of its viscous behavior. After pre-sintering, infiltration under vacuum was conducted. Metakaolin slurry was filled partially into the triangular void. As a result, the compression strength was improved by structure modification without composition change.
This study examined the heat balance in the electrolytic reducer during oxide reduction of pyroprocessing. The adoption of carbon anodes instead of conventional platinum anodes in the oxide reduction process has made it possible to apply high currents, and it has been observed that the temperature of the molten salt of in the reactor rises rapidly when applying high currents, so it is important to maintain an optimal operational temperature range. In this study, salt resistant heat, reaction heat, and decay heat were identified as factors affecting heat balance during the operation of oxide reduction process. Equations describing the relationships among these factors were established. Then using this, a correlation was developed to understand the relationship between applied current and the molten salt temperature in the reactor observed in the actual operation of the carbon anode electrolytic reducer of KAERI. Furthermore, this study proposed strategies to mitigate excessive temperature elevation during oxide reduction operation. A comparative assessment of these approaches was conducted. Considering KAERI electrolytic reducer operation environment, among the considered cooling strategies, the cooling effectiveness was calculated to be highest in the following order: heat transfer to extra salt, convection, conduction, argon gas bubbling.
Detergency and surface active properties of mixed anionic surfactants with amphoteric and nonionic were investigated. Sodium dodecyl sulfate (SDS) and ammonium dodecyl sulfate (ADS) as anionic surfactants and cocamidopropyl betaine (CAPB) as an amphoteric surfactant were used. Nonionic surfactants, which are butyl glucoside (BG), octyl glucoside (OG), decyl glucoside (DG), lauryl dimethylamine oxide (AO) and saponin were also used. To study the synergy effects of mixed SDS/ADS anionic surfactant systems, amphoteric and nonionic surfactants were added into the mixed anionic surfactants. Investigated properties of surfactant mixtures were critical micelle concentration (CMC), surface tension (γ), wettability. In addition, based on these properties, detergency of each sample was examined. Surfactant mixtures are anionics (SDS/ADS), anionic/amphoteric/nonionic (SDS/ADS/CAPB/ saponin), and anionic/nonionic (SDS/ADS/BG/saponin, SDS/ADS/OG/saponin, SDS/ADS/ DG/saponin, and SDS/ADS/AO/saponin). With the addition of amphoteric and nonionic to mixed anionic surfactants, CMC and γ were decreased. Addition of CAPB, which is amphoteric, showed the best property at CMC and γ. Furthermore, as the chain length of hydrocarbon in alkyl glucosides was increased, the CMC and γ were enhanced. However, the wettability did not exactly match up with CMC and γ. The surfactant mixture, which contained DG, showed the best performance at wetting time. Detergency was measured at various temperatures (15 oC, 30 oC, 50 oC). The cleaning performance was enhanced by increasing washing temperature. Moreover, detergency was influenced by not only CMC and γ but also wettability. Although CMC and γ were not minimum at surfactant mixture that included DG, the best cleaning performance showed in that sample.
A new single cross hybrid, 'Dumechal', is a white waxy corn (Zea mays L.) developed by the Maize Experiment Station(MES) of Gangwondo Agricultural Research and Extension Services (GARES) in Hongcheon in 1999. 'Dumechal' was made by crossing two inbred lin
A new sesame variety 'Namback'was developed at the National Crop Experiment Station through a cross between commercialiy utilized varieties of high yielding 'Danbackkae' and late seeding of second cropping daptable 'Chinjukkae' at 1989 and had been select